cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356954 Number of multisets of multisets, each covering an initial interval, whose multiset union is of size n and has weakly decreasing multiplicities.

This page as a plain text file.
%I A356954 #7 Sep 13 2022 13:07:01
%S A356954 1,1,3,6,15,30,71,145,325,680
%N A356954 Number of multisets of multisets, each covering an initial interval, whose multiset union is of size n and has weakly decreasing multiplicities.
%H A356954 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vR-C_picqWlu0KOguRGWaPjhS2HY7m43aGXGDcolDh4Qtyy-pu2lkq5mbHAbiMSyQoiIESG2mCGtc2j/pub">Counting and ranking classes of multiset partitions related to gapless multisets</a>
%e A356954 The a(1) = 1 through a(4) = 15 multiset partitions:
%e A356954   {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}
%e A356954          {{1,2}}    {{1,1,2}}      {{1,1,1,2}}
%e A356954          {{1},{1}}  {{1,2,3}}      {{1,1,2,2}}
%e A356954                     {{1},{1,1}}    {{1,1,2,3}}
%e A356954                     {{1},{1,2}}    {{1,2,3,4}}
%e A356954                     {{1},{1},{1}}  {{1},{1,1,1}}
%e A356954                                    {{1,1},{1,1}}
%e A356954                                    {{1},{1,1,2}}
%e A356954                                    {{1,1},{1,2}}
%e A356954                                    {{1},{1,2,2}}
%e A356954                                    {{1},{1,2,3}}
%e A356954                                    {{1,2},{1,2}}
%e A356954                                    {{1},{1},{1,1}}
%e A356954                                    {{1},{1},{1,2}}
%e A356954                                    {{1},{1},{1},{1}}
%t A356954 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A356954 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
%t A356954 normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
%t A356954 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
%t A356954 Table[Length[Select[Join@@mps/@strnorm[n],And@@normQ/@#&]],{n,0,5}]
%Y A356954 For unrestricted multiplicities we have A034691.
%Y A356954 A000041 counts integer partitions, strict A000009.
%Y A356954 A000670 counts patterns, ranked by A333217, necklace A019536.
%Y A356954 A011782 counts multisets covering an initial interval.
%Y A356954 Other conditions: A035310, A063834, A330783, A356934, A356938, A356943.
%Y A356954 Other types: A055932, A089259, A356945, A356955.
%Y A356954 Cf. A055887, A072233, A270995, A304969, A349050, A349055, A356942.
%K A356954 nonn,more
%O A356954 0,3
%A A356954 _Gus Wiseman_, Sep 09 2022