This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356954 #7 Sep 13 2022 13:07:01 %S A356954 1,1,3,6,15,30,71,145,325,680 %N A356954 Number of multisets of multisets, each covering an initial interval, whose multiset union is of size n and has weakly decreasing multiplicities. %H A356954 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vR-C_picqWlu0KOguRGWaPjhS2HY7m43aGXGDcolDh4Qtyy-pu2lkq5mbHAbiMSyQoiIESG2mCGtc2j/pub">Counting and ranking classes of multiset partitions related to gapless multisets</a> %e A356954 The a(1) = 1 through a(4) = 15 multiset partitions: %e A356954 {{1}} {{1,1}} {{1,1,1}} {{1,1,1,1}} %e A356954 {{1,2}} {{1,1,2}} {{1,1,1,2}} %e A356954 {{1},{1}} {{1,2,3}} {{1,1,2,2}} %e A356954 {{1},{1,1}} {{1,1,2,3}} %e A356954 {{1},{1,2}} {{1,2,3,4}} %e A356954 {{1},{1},{1}} {{1},{1,1,1}} %e A356954 {{1,1},{1,1}} %e A356954 {{1},{1,1,2}} %e A356954 {{1,1},{1,2}} %e A356954 {{1},{1,2,2}} %e A356954 {{1},{1,2,3}} %e A356954 {{1,2},{1,2}} %e A356954 {{1},{1},{1,1}} %e A356954 {{1},{1},{1,2}} %e A356954 {{1},{1},{1},{1}} %t A356954 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}]; %t A356954 mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; %t A356954 normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]]; %t A356954 strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; %t A356954 Table[Length[Select[Join@@mps/@strnorm[n],And@@normQ/@#&]],{n,0,5}] %Y A356954 For unrestricted multiplicities we have A034691. %Y A356954 A000041 counts integer partitions, strict A000009. %Y A356954 A000670 counts patterns, ranked by A333217, necklace A019536. %Y A356954 A011782 counts multisets covering an initial interval. %Y A356954 Other conditions: A035310, A063834, A330783, A356934, A356938, A356943. %Y A356954 Other types: A055932, A089259, A356945, A356955. %Y A356954 Cf. A055887, A072233, A270995, A304969, A349050, A349055, A356942. %K A356954 nonn,more %O A356954 0,3 %A A356954 _Gus Wiseman_, Sep 09 2022