This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356956 #6 Sep 26 2022 12:54:50 %S A356956 0,1,2,4,6,8,16,20,32,52,64,72,128,256,272,328,512,840,1024,1056,2048, %T A356956 2320,4096,4160,8192,10512,16384,16512,17440,26896,32768,65536,65792, %U A356956 131072,135232,148512,262144,262656,524288,672800,1048576,1049600,1065088,1721376 %N A356956 Numbers k such that the k-th composition in standard order is a gapless interval (in increasing order). %C A356956 An interval such as {3,4,5} is a set of positive integers with all differences of adjacent elements equal to 1. %C A356956 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A356956 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A356956 The terms and corresponding intervals begin: %e A356956 0: () %e A356956 1: (1) %e A356956 2: (2) %e A356956 4: (3) %e A356956 6: (1,2) %e A356956 8: (4) %e A356956 16: (5) %e A356956 20: (2,3) %e A356956 32: (6) %e A356956 52: (1,2,3) %e A356956 64: (7) %e A356956 72: (3,4) %e A356956 128: (8) %e A356956 256: (9) %e A356956 272: (4,5) %e A356956 328: (2,3,4) %e A356956 512: (10) %e A356956 840: (1,2,3,4) %t A356956 stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A356956 chQ[y_]:=Length[y]<=1||Union[Differences[y]]=={1}; %t A356956 Select[Range[0,1000],chQ[stc[#]]&] %Y A356956 See link for sequences related to standard compositions. %Y A356956 These compositions are counted by A001227. %Y A356956 An unordered version is A073485, non-strict A073491 (complement A073492). %Y A356956 The initial version is A164894, non-strict A356843 (unordered A356845). %Y A356956 The non-strict version is A356841, initial A333217, counted by A107428. %Y A356956 A066311 lists gapless numbers. %Y A356956 A356230 ranks gapless factorization lengths, firsts A356603. %Y A356956 A356233 counts factorizations into gapless numbers. %Y A356956 A356844 ranks compositions with at least one 1. %Y A356956 Cf. A053251, A055932, A073493, A132747, A137921, A286470, A356224, A356842. %K A356956 nonn %O A356956 1,3 %A A356956 _Gus Wiseman_, Sep 24 2022