cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356957 Number of set partitions of strict integer partitions of n into intervals, where an interval is a set of positive integers with all differences of adjacent elements equal to 1.

This page as a plain text file.
%I A356957 #7 Sep 14 2022 08:26:10
%S A356957 1,1,1,3,2,4,7,7,8,13,20,19,27,30,42,60,63,75,99,112,141,191,205,248,
%T A356957 296,357,408,513,617,696,831,969,1117,1337,1523,1797,2171,2420,2805,
%U A356957 3265,3772,4289,5013,5661,6579,7679,8615,9807,11335,12799,14581
%N A356957 Number of set partitions of strict integer partitions of n into intervals, where an interval is a set of positive integers with all differences of adjacent elements equal to 1.
%e A356957 The a(1) = 1 through a(6) = 7 set partitions:
%e A356957   {{1}}  {{2}}  {{3}}      {{4}}      {{5}}      {{6}}
%e A356957                 {{1,2}}    {{1},{3}}  {{2,3}}    {{1,2,3}}
%e A356957                 {{1},{2}}             {{1},{4}}  {{1},{5}}
%e A356957                                       {{2},{3}}  {{2},{4}}
%e A356957                                                  {{1},{2,3}}
%e A356957                                                  {{1,2},{3}}
%e A356957                                                  {{1},{2},{3}}
%t A356957 chQ[y_] := Length[y] <= 1 || Union[Differences[y]] == {1};
%t A356957 sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];
%t A356957 Table[Length[Select[Join@@sps/@Reverse/@Select[IntegerPartitions[n], UnsameQ@@#&],And@@chQ/@#&]],{n,0,15}]
%Y A356957 Intervals are counted by A000012, A001227, ranked by A073485.
%Y A356957 The initial version is A010054.
%Y A356957 For set partitions of {1..n} we have A011782.
%Y A356957 The non-strict version is A107742
%Y A356957 Not restricting to intervals gives A294617.
%Y A356957 More types: A356936, A356937, A356938, A356939, A356940.
%Y A356957 A000041 counts integer partitions, strict A000009.
%Y A356957 A000110 counts set partitions.
%Y A356957 A001970 counts multiset partitions of integer partitions.
%Y A356957 A356941 counts multiset partitions of integer partitions w/ gapless blocks.
%Y A356957 Cf. A001055, A055887, A061260, A270995, A304969, A349050, A349055.
%K A356957 nonn
%O A356957 0,4
%A A356957 _Gus Wiseman_, Sep 13 2022