This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356958 #9 Dec 28 2022 09:04:54 %S A356958 1,2,1,1,1,3,1,2,4,2,1,1,1,2,2,1,3,3,5,1,1,2,1,6,1,1,1,4,2,3,1,1,1,1, %T A356958 4,7,2,1,2,2,8,5,1,1,3,2,4,1,5,1,2,9,1,1,1,2,1,3,3,6,1,6,2,2,2,3,1,1, %U A356958 4,7,10,1,2,3,11,1,3,1,1,1,1,1,4,2,5 %N A356958 Triangle read by rows: if n has weakly increasing prime indices (a,b,...,y,z) then row n is (b-a+1, ..., y-a+1, z-a+1). %C A356958 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A356958 Triangle begins: %e A356958 1: . %e A356958 2: . %e A356958 3: . %e A356958 4: 1 %e A356958 5: . %e A356958 6: 2 %e A356958 7: . %e A356958 8: 1 1 %e A356958 9: 1 %e A356958 10: 3 %e A356958 11: . %e A356958 12: 1 2 %e A356958 13: . %e A356958 14: 4 %e A356958 15: 2 %e A356958 16: 1 1 1 %e A356958 For example, the prime indices of 315 are (2,2,3,4), so row 315 is (2,3,4) - 2 + 1 = (1,2,3). %t A356958 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A356958 Table[If[n==1,{},1-First[primeMS[n]]+Rest[primeMS[n]]],{n,100}] %Y A356958 Row lengths are A001222(n) - 1. %Y A356958 Indices of empty rows are A008578. %Y A356958 Even bisection is A112798. %Y A356958 Heinz numbers of rows are A246277. %Y A356958 An opposite version is A358172, Heinz numbers A358195. %Y A356958 Row sums are A359358(n) + A001222(n) - 1. %Y A356958 A112798 list prime indices, sum A056239. %Y A356958 A243055 subtracts the least prime index from the greatest. %Y A356958 Cf. A055396, A124010, A241916, A253565, A325351, A325352, A326844, A355534, A355536, A358137. %K A356958 nonn,tabf %O A356958 1,2 %A A356958 _Gus Wiseman_, Dec 27 2022