This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356969 #11 Sep 10 2022 14:00:53 %S A356969 0,0,0,0,1,0,0,0,0,0,0,1,2,1,0,0,1,2,2,1,0,0,0,0,3,0,0,0,0,1,2,1,1,2, %T A356969 1,0,0,0,2,2,4,2,2,0,0,0,1,2,3,3,3,3,2,1,0,0,1,2,2,4,5,4,2,2,1,0,0,0, %U A356969 0,3,0,5,5,0,3,0,0,0,0,1,2,1,1,2,6,2,1,1,2,1,0 %N A356969 A(n, k) is the sum of the terms in common in the dual Zeckendorf representations of n and of k; square array A(n, k) read by antidiagonals, n, k >= 0. %C A356969 The dual Zeckendorf representation corresponds to the lazy Fibonacci representation. %C A356969 See A334348 for the sequence dealing with Zeckendorf (or greedy Fibonacci) representations. Unlike A334348, the present sequence is not associative. %H A356969 Rémy Sigrist, <a href="/A356969/a356969.png">Colored representation of the table for x, y < Fibonacci(16)-1</a> (the hue is function of A(x,y)) %H A356969 Rémy Sigrist, <a href="/A356969/a356969.gp.txt">PARI program</a> %H A356969 <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a> %F A356969 A(n, k) = A022290(A003754(n+1) AND A003754(k+1)) (where AND denotes the bitwise AND operator, A004198). %F A356969 A(n, k) = A(k, n). %F A356969 A(n, 0) = 0. %F A356969 A(n, n) = n. %e A356969 Square array A(n, k) begins: %e A356969 n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12 13 %e A356969 ---+---------------------------------------------- %e A356969 0| 0 0 0 0 0 0 0 0 0 0 0 0 0 0 %e A356969 1| 0 1 0 1 1 0 1 0 1 1 0 1 1 0 %e A356969 2| 0 0 2 2 0 2 2 2 2 0 2 2 0 2 %e A356969 3| 0 1 2 3 1 2 3 2 3 1 2 3 1 2 %e A356969 4| 0 1 0 1 4 3 4 0 1 4 3 4 4 3 %e A356969 5| 0 0 2 2 3 5 5 2 2 3 5 5 3 5 %e A356969 6| 0 1 2 3 4 5 6 2 3 4 5 6 4 5 %e A356969 7| 0 0 2 2 0 2 2 7 7 5 7 7 0 2 %e A356969 8| 0 1 2 3 1 2 3 7 8 6 7 8 1 2 %e A356969 9| 0 1 0 1 4 3 4 5 6 9 8 9 4 3 %e A356969 10| 0 0 2 2 3 5 5 7 7 8 10 10 3 5 %e A356969 11| 0 1 2 3 4 5 6 7 8 9 10 11 4 5 %e A356969 12| 0 1 0 1 4 3 4 0 1 4 3 4 12 11 %e A356969 13| 0 0 2 2 3 5 5 2 2 3 5 5 11 13 %o A356969 (PARI) See Links section. %Y A356969 Cf. A003754, A022290, A334348. %K A356969 nonn,base,tabl %O A356969 0,13 %A A356969 _Rémy Sigrist_, Sep 06 2022