cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356969 A(n, k) is the sum of the terms in common in the dual Zeckendorf representations of n and of k; square array A(n, k) read by antidiagonals, n, k >= 0.

This page as a plain text file.
%I A356969 #11 Sep 10 2022 14:00:53
%S A356969 0,0,0,0,1,0,0,0,0,0,0,1,2,1,0,0,1,2,2,1,0,0,0,0,3,0,0,0,0,1,2,1,1,2,
%T A356969 1,0,0,0,2,2,4,2,2,0,0,0,1,2,3,3,3,3,2,1,0,0,1,2,2,4,5,4,2,2,1,0,0,0,
%U A356969 0,3,0,5,5,0,3,0,0,0,0,1,2,1,1,2,6,2,1,1,2,1,0
%N A356969 A(n, k) is the sum of the terms in common in the dual Zeckendorf representations of n and of k; square array A(n, k) read by antidiagonals, n, k >= 0.
%C A356969 The dual Zeckendorf representation corresponds to the lazy Fibonacci representation.
%C A356969 See A334348 for the sequence dealing with Zeckendorf (or greedy Fibonacci) representations. Unlike A334348, the present sequence is not associative.
%H A356969 Rémy Sigrist, <a href="/A356969/a356969.png">Colored representation of the table for x, y < Fibonacci(16)-1</a> (the hue is function of A(x,y))
%H A356969 Rémy Sigrist, <a href="/A356969/a356969.gp.txt">PARI program</a>
%H A356969 <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a>
%F A356969 A(n, k) = A022290(A003754(n+1) AND A003754(k+1)) (where AND denotes the bitwise AND operator, A004198).
%F A356969 A(n, k) = A(k, n).
%F A356969 A(n, 0) = 0.
%F A356969 A(n, n) = n.
%e A356969 Square array A(n, k) begins:
%e A356969   n\k|  0  1  2  3  4  5  6  7  8  9  10  11  12  13
%e A356969   ---+----------------------------------------------
%e A356969     0|  0  0  0  0  0  0  0  0  0  0   0   0   0   0
%e A356969     1|  0  1  0  1  1  0  1  0  1  1   0   1   1   0
%e A356969     2|  0  0  2  2  0  2  2  2  2  0   2   2   0   2
%e A356969     3|  0  1  2  3  1  2  3  2  3  1   2   3   1   2
%e A356969     4|  0  1  0  1  4  3  4  0  1  4   3   4   4   3
%e A356969     5|  0  0  2  2  3  5  5  2  2  3   5   5   3   5
%e A356969     6|  0  1  2  3  4  5  6  2  3  4   5   6   4   5
%e A356969     7|  0  0  2  2  0  2  2  7  7  5   7   7   0   2
%e A356969     8|  0  1  2  3  1  2  3  7  8  6   7   8   1   2
%e A356969     9|  0  1  0  1  4  3  4  5  6  9   8   9   4   3
%e A356969    10|  0  0  2  2  3  5  5  7  7  8  10  10   3   5
%e A356969    11|  0  1  2  3  4  5  6  7  8  9  10  11   4   5
%e A356969    12|  0  1  0  1  4  3  4  0  1  4   3   4  12  11
%e A356969    13|  0  0  2  2  3  5  5  2  2  3   5   5  11  13
%o A356969 (PARI) See Links section.
%Y A356969 Cf. A003754, A022290, A334348.
%K A356969 nonn,base,tabl
%O A356969 0,13
%A A356969 _Rémy Sigrist_, Sep 06 2022