cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A361789 A(n, k) is the sum of the distinct terms in the dual Zeckendorf representations of n or of k; square array A(n, k) read by antidiagonals, n, k >= 0.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 3, 3, 3, 4, 3, 2, 3, 4, 5, 4, 3, 3, 4, 5, 6, 6, 6, 3, 6, 6, 6, 7, 6, 5, 6, 6, 5, 6, 7, 8, 8, 6, 6, 4, 6, 6, 8, 8, 9, 8, 7, 6, 6, 6, 6, 7, 8, 9, 10, 9, 8, 8, 6, 5, 6, 8, 8, 9, 10, 11, 11, 11, 8, 11, 6, 6, 11, 8, 11, 11, 11, 12, 11, 10, 11, 11, 10, 6, 10, 11, 11, 10, 11, 12
Offset: 0

Views

Author

Rémy Sigrist, Mar 24 2023

Keywords

Comments

The dual Zeckendorf representation corresponds to the lazy Fibonacci representation (see A356771 for further details).

Examples

			Array A(n, k) begins:
  n\k |  0   1   2   3   4   5   6   7   8   9  10  11  12  13
  ----+-------------------------------------------------------
    0 |  0   1   2   3   4   5   6   7   8   9  10  11  12  13
    1 |  1   1   3   3   4   6   6   8   8   9  11  11  12  14
    2 |  2   3   2   3   6   5   6   7   8  11  10  11  14  13
    3 |  3   3   3   3   6   6   6   8   8  11  11  11  14  14
    4 |  4   4   6   6   4   6   6  11  11   9  11  11  12  14
    5 |  5   6   5   6   6   5   6  10  11  11  10  11  14  13
    6 |  6   6   6   6   6   6   6  11  11  11  11  11  14  14
    7 |  7   8   7   8  11  10  11   7   8  11  10  11  19  18
    8 |  8   8   8   8  11  11  11   8   8  11  11  11  19  19
    9 |  9   9  11  11   9  11  11  11  11   9  11  11  17  19
   10 | 10  11  10  11  11  10  11  10  11  11  10  11  19  18
   11 | 11  11  11  11  11  11  11  11  11  11  11  11  19  19
   12 | 12  12  14  14  12  14  14  19  19  17  19  19  12  14
   13 | 13  14  13  14  14  13  14  18  19  19  18  19  14  13
		

Crossrefs

Programs

  • PARI
    See Links section.

Formula

A(n, k) = A022290(A003754(n+1) OR A003754(k+1)) (where OR denotes the bitwise OR operator, A004198).
A(n, k) = A(k, n).
A(n, 0) = n.
A(n, n) = n.
A(A(m, n), k) = A(m, A(n, k)).
A(A(n, k), n) = A(n, k).
A(n, A361756(n, k)) = n.
Showing 1-1 of 1 results.