cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356974 Irregular triangle T(n, k) read by rows, n >= 0, k = 1..A117546(n); the n-th row contains the numbers m such that A356964(m) = n, in increasing order.

This page as a plain text file.
%I A356974 #10 Sep 11 2022 06:13:19
%S A356974 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,16,15,17,18,19,20,21,22,23,24,25,
%T A356974 26,27,28,32,29,33,30,34,31,35,36,37,38,39,40,41,42,43,44,45,46,48,47,
%U A356974 49,50,51,52,53,54,55,56,64,57,65,58,66,59,67,60,68,61,69,62,70
%N A356974 Irregular triangle T(n, k) read by rows, n >= 0, k = 1..A117546(n); the n-th row contains the numbers m such that A356964(m) = n, in increasing order.
%C A356974 This sequence is to tribonacci numbers (A000073) what A345101 is to Fibonacci numbers (A000045).
%C A356974 This sequence (when interpreted as a flat sequence) is a permutation of the nonnegative integers.
%H A356974 Rémy Sigrist, <a href="/A356974/b356974.txt">Table of n, a(n) for n = 0..7021</a>
%H A356974 Rémy Sigrist, <a href="/A356974/a356974.gp.txt">PARI program</a>
%H A356974 <a href="/index/Z#Zeckendorf">Index entries for sequences related to Zeckendorf expansion of n</a>
%H A356974 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a>
%F A356974 T(n, 1) = A003796(n+1).
%F A356974 T(n, A117546(n)) = A003726(n+1).
%e A356974 Triangle begins:
%e A356974      0   [0]
%e A356974      1   [1]
%e A356974      2   [2]
%e A356974      3   [3]
%e A356974      4   [4]
%e A356974      5   [5]
%e A356974      6   [6]
%e A356974      7   [7, 8]
%e A356974      8   [9]
%e A356974      9   [10]
%e A356974     10   [11]
%e A356974     11   [12]
%e A356974     12   [13]
%e A356974     13   [14, 16]
%e A356974     14   [15, 17]
%o A356974 (PARI) See Links section.
%Y A356974 Cf. A000045, A000073, A003726, A003796, A117546 (row lengths), A345101, A356964.
%K A356974 nonn,tabf,base
%O A356974 0,3
%A A356974 _Rémy Sigrist_, Sep 07 2022