A356976 Least positive integer m such that the numbers k^3 + 3*k (k = 1..n) are pairwise distinct modulo m.
1, 3, 3, 7, 15, 15, 19, 27, 27, 39, 39, 39, 61, 61, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243, 243
Offset: 1
Keywords
Examples
a(2) = 3, for, 1^3 + 3*1 = 4 and 2^3 + 3*2 = 14 are incongruent modulo 3, but congruent modulo 1 and 2.
Links
- Zhi-Wei Sun, On functions taking only prime values, J. Number Theory 133(2013), no.8, 2794-2812.
- Zhi-Wei Sun, New Conjectures in Number Theory and Combinatorics (in Chinese), Harbin Institute of Technology Press, 2021.
- Quan-Hui Yang and Lilu Zhao, On a conjecture of Sun involving powers of three, arXiv:2111.02746 [math.NT], 2021.
Programs
-
Mathematica
f[k_]:=f[k]=k^3+3*k; U[m_, n_]:=U[m, n]=Length[Union[Table[Mod[f[k], m], {k, 1, n}]]] tab={}; s=1; Do[m=s; Label[bb]; If[U[m, n]==n, s=m; tab=Append[tab, s]; Goto[aa]]; m=m+1; Goto[bb]; Label[aa], {n, 1, 80}]; Print[tab]
Comments