cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356979 Emirps p such that p, its digit reversal, and their squares are all quasi-Niven numbers.

Original entry on oeis.org

10253, 35201, 121921, 129121, 155851, 158551, 712909, 909217, 1005761, 1007921, 1010201, 1013321, 1020101, 1020881, 1032131, 1037801, 1084357, 1087301, 1100441, 1115399, 1233101, 1297001, 1312301, 1440011, 1564991, 1675001, 1880201, 1963369, 1994651, 7534801, 9633691, 9935111, 10000609, 10005361
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Sep 08 2022

Keywords

Comments

Primes p such that the digit reversal R(p) is another prime, and p mod A007953(p) = R(p) mod A007953(R(p)) = p^2 mod A007953(p^2) = R(p)^2 mod A007953(R(p)^2) = 1.

Examples

			a(3) = 121921 is a term because it and its reversal 129121 are distinct primes, 121921 mod (1+2+1+9+2+1) = 129121 mod (1+2+9+1+2+1) = 1, 121921^2 = 14864730241 with sum of digits 40, 129121^2 = 16672232641 also with sum of digits 40, 121921^2 mod 40 = 1 and 129121^2 mod 40 = 1.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) local L, i, r, s;
      if not isprime(n) then return false fi;
      L:= convert(n, base, 10);
      r:= add(L[-i]*10^(i-1), i=1..nops(L));
      if r = n or not isprime(r) then return false fi;
      s:= convert(L, `+`);
      n mod s = 1 and r mod s = 1 and n^2 mod convert(convert(n^2,base,10),`+`)=1 and r^2 mod convert(convert(r^2,base,10),`+`)=1
    end proc:
    select(filter, [seq(i,i=3..10^7,2)]);