This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356980 #29 Sep 11 2022 19:00:58 %S A356980 137,187,321,917,1098,1346,1347,1349,1362,1367,1384,1395,1528,1583, %T A356980 1850,1859,1876,1973,2415,2490,2517,2631,2632,2970,3417,3529,3573, %U A356980 3575,3590,3598,3751,3785,3860,4301,4537,4591,4639,4927,4980,4983,5231,5319,5342,5790,6106,6107 %N A356980 Numbers k such that prime(k) can be written using only the digits of k (but they may used multiple times). %C A356980 The digits of k can be reused. In other words, the distinct digits of prime(k) form a subset of the set of the distinct digits of k. %C A356980 This sequence is infinite as every pandigital number is in this sequence, see A171102. %e A356980 The 137th prime number is 773, which can be written with the digits of 137. Thus 137 is in this sequence. %t A356980 Select[Range[10000], SubsetQ[Sort[IntegerDigits[#]], Sort[IntegerDigits[Prime[#]]]] &] %o A356980 (Python) %o A356980 from sympy import nextprime %o A356980 from itertools import count, islice %o A356980 def agen(): # generator of terms %o A356980 pk = 2 %o A356980 for k in count(1): %o A356980 if set(str(pk)) <= set(str(k)): yield k %o A356980 pk = nextprime(pk) %o A356980 print(list(islice(agen(), 46))) # _Michael S. Branicky_, Sep 09 2022 %Y A356980 Cf. A171102, A080794. %K A356980 nonn,base %O A356980 1,1 %A A356980 _Tanya Khovanova_, Sep 09 2022