cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A356987 Primes whose decimal expansion is 1, zero or more 0's, then a single digit.

This page as a plain text file.
%I A356987 #49 Jan 08 2023 11:48:17
%S A356987 11,13,17,19,101,103,107,109,1009,10007,10009,100003,1000003,
%T A356987 100000007,1000000007,1000000009,100000000003,100000000000000003,
%U A356987 1000000000000000003,1000000000000000009,10000000000000000000009,1000000000000000000000007
%N A356987 Primes whose decimal expansion is 1, zero or more 0's, then a single digit.
%C A356987 The sequence is a subsequence of A139054.
%C A356987 All the terms of this sequence are of the form 10^k + m, where m belongs to the set {1, 3, 7, 9} and k is a nonnegative integer.
%C A356987 If a term is of the form 10^k+m and k is odd, then m > 1. - _Chai Wah Wu_, Oct 22 2022
%H A356987 Jonasz Aleszkiewicz, <a href="https://github.com/Aleshkev/algoritmika/blob/master/primes.md">Algoritmika/primes.md</a>.
%e A356987 1000000007 is a term because it is a prime number whose decimal expansion is 1, 8 zeros, then the single digit 7.
%t A356987 PrmsUpTo10PowNpl9[n_] := Parallelize @ Cases[ Table[10^k+m,{k,n},{m,{1,3,7,9}}], _?PrimeQ, {2}]; PrmsUpTo10PowNpl9[1000] (* _Mikk Heidemaa_, Jan 07 2023 *)
%o A356987 (Python)
%o A356987 from itertools import count, islice
%o A356987 from sympy import isprime
%o A356987 def A356987_gen(): # generator of terms
%o A356987     return filter(isprime,(10**k+m for k in count(1) for m in (1,3,7,9)))
%o A356987 A356987_list = print(list(islice(A356987_gen(),30))) # _Chai Wah Wu_, Oct 22 2022
%Y A356987 Cf. A049054, A088274, A088275, A139054, A159031, A159352.
%K A356987 nonn,base
%O A356987 1,1
%A A356987 _Marco RipĂ _, Sep 08 2022