This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A356997 #16 Jan 01 2025 09:54:17 %S A356997 0,1,1,0,1,1,1,1,2,2,2,1,1,2,3,3,3,3,3,2,2,2,3,4,5,5,5,5,5,5,5,4,3,3, %T A356997 3,3,4,5,6,7,8,8,8,8,8,8,8,8,8,8,8,7,6,5,5,5,5,5,5,6,7,8,9,10,11,12, %U A356997 13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,13,12,11,10,9,8,8,8,8,8,8,8,8,8,9,10,11 %N A356997 a(n) = b(n) - b(n - b(n - b(n))) for n >= 2, where b(n) = A356988(n). %C A356997 The line graph of the sequence consists of a series of local plateaus and local troughs joined at each end by lines of slope 1 and slope -1. More precisely, for k >= 3 the graph of the sequence consists of %C A356997 a) local plateaus: on the integer interval [2*F(k), 2*F(k) + 2*F(k-3)] the sequence has the constant value F(k-2), where F(n) denotes the n-th Fibonacci number %C A356997 b) descent to a trough: on the integer interval [2*F(k) + 2*F(k-3), F(k+2)] the line graph of the sequence has slope -1 %C A356997 c) local troughs: on the integer interval [F(k+2), F(k+2) + F(k-3)] the sequence has the constant value F(k-3) %C A356997 d) ascent to a plateau: on the integer interval [F(k+2) + F(k-3), 2*F(k+1)] the line graph of the sequence has slope 1. %F A356997 a(n+1) - a(n) = 1, 0 or -1. %F A356997 Let F(n) = A000045(n) with F(-1) = 1 and let L(n) = A000032(n). %F A356997 For k >= 5, a(F(k) + j) = F(k-5) for 0 <= j <= F(k-5) (troughs). %F A356997 For k >= 4, a(2*F(k) + j) = F(k-2) for 0 <= j <= 2*F(k-3) (plateaus). %e A356997 The sequence is arranged to show the local plateaus (P) and the local troughs (T): %e A356997 0, %e A356997 1, %e A356997 1, %e A356997 T 0, %e A356997 P 1, 1, 1 %e A356997 1, %e A356997 P 2, 2, 2, %e A356997 T 1,1, %e A356997 2, %e A356997 P 3, 3, 3, 3, 3, %e A356997 T 2, 2, 2, %e A356997 3, %e A356997 4, %e A356997 P 5, 5, 5, 5, 5, 5, 5, %e A356997 4, %e A356997 T 3, 3, 3, 3, %e A356997 4, %e A356997 5, %e A356997 6, %e A356997 7, %e A356997 P 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, %e A356997 7, %e A356997 6, %e A356997 T 5, 5, 5, 5, 5, 5, %e A356997 6, %e A356997 7, %e A356997 8, %e A356997 9, %e A356997 10, %e A356997 11, %e A356997 12, %e A356997 P 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, %e A356997 12, %e A356997 11, %e A356997 10, %e A356997 9, %e A356997 T 8, 8, 8, 8, 8, 8, 8, 8, 8, %e A356997 9, %e A356997 10, %e A356997 11, %e A356997 ... %p A356997 # b(n) = A356988 %p A356997 b := proc(n) option remember; if n = 1 then 1 else n - b(b(n - b(b(b(n-1))))) end if; end proc: %p A356997 seq( b(n) - b(n - b(n - b(n))), n = 2..100); %Y A356997 Cf. A000045, A356988, A356991 - A356999. %K A356997 nonn,easy %O A356997 2,9 %A A356997 _Peter Bala_, Sep 11 2022