cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357017 Decimal expansion of the asymptotic density of odd numbers whose exponents in their prime factorization are squares.

This page as a plain text file.
%I A357017 #5 Sep 09 2022 04:18:47
%S A357017 4,0,9,7,9,7,4,4,6,7,1,3,3,1,9,7,0,7,5,1,0,9,2,2,9,5,6,5,2,8,4,4,0,4,
%T A357017 9,9,9,8,2,3,0,1,6,3,9,3,9,0,6,7,2,7,3,1,1,6,9,2,2,6,8,1,6,3,7,6,2,1,
%U A357017 9,8,3,5,0,3,1,1,5,9,5,7,3,6,2,7,8,6,0,9,3,3,9,0,2,0,1,8,0,5,3,6,9,4,1,4,5
%N A357017 Decimal expansion of the asymptotic density of odd numbers whose exponents in their prime factorization are squares.
%C A357017 Equivalently, the asymptotic density of numbers whose sum of their exponential divisors (A051377) is odd (A357014).
%H A357017 Vladimir Shevelev, <a href="http://arxiv.org/abs/1510.05914">Exponentially S-numbers</a>, arXiv:1510.05914 [math.NT], 2015-2016.
%F A357017 Equals (1/2) * Product_{p odd prime} (1 + Sum_{k>=2} (c(k)-c(k-1))/p^k), where c(k) is the characteristic function of the squares (A010052).
%e A357017 0.40979744671331970751092295652844049998230163939067...
%t A357017 $MaxExtraPrecision = m = 1000; em = 100; f[x_] := Log[1 + Sum[x^(e^2), {e, 2, em}] - Sum[x^(e^2 + 1), {e, 1, em}]]; c = Rest[CoefficientList[Series[f[x], {x, 0, m}], x]*Range[0, m]]; RealDigits[(1/2) * Exp[NSum[Indexed[c, k]*(PrimeZetaP[k] - 1/2^k)/k, {k, 2, m}, NSumTerms -> m, WorkingPrecision -> m]], 10, 105][[1]]
%Y A357017 Cf. A000290, A010052, A051377, A197680, A357014, A357016.
%K A357017 nonn,cons
%O A357017 0,1
%A A357017 _Amiram Eldar_, Sep 09 2022