cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357024 E.g.f. satisfies log(A(x)) = (exp(x * A(x)) - 1)^2.

This page as a plain text file.
%I A357024 #13 Sep 12 2022 03:20:05
%S A357024 1,0,2,6,74,750,11402,195006,3994202,93164910,2455754762,72098755806,
%T A357024 2333497474970,82569245246670,3170700672801482,131342693516044926,
%U A357024 5837883571730770778,277151780512413426990,13997018265350140886282,749304617892345721184286
%N A357024 E.g.f. satisfies log(A(x)) = (exp(x * A(x)) - 1)^2.
%F A357024 a(n) = Sum_{k=0..floor(n/2)} (2*k)! * (n+1)^(k-1) * Stirling2(n,2*k)/k!.
%t A357024 m = 20; (* number of terms *)
%t A357024 A[_] = 0;
%t A357024 Do[A[x_] = Exp[(Exp[x*A[x]] - 1)^2] + O[x]^m // Normal, {m}];
%t A357024 CoefficientList[A[x], x]*Range[0, m - 1]! (* _Jean-François Alcover_, Sep 12 2022 *)
%o A357024 (PARI) a(n) = sum(k=0, n\2, (2*k)!*(n+1)^(k-1)*stirling(n, 2*k, 2)/k!);
%Y A357024 Cf. A030019, A357025.
%Y A357024 Cf. A052859, A357009, A357031.
%K A357024 nonn
%O A357024 0,3
%A A357024 _Seiichi Manyama_, Sep 09 2022