This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357027 #19 Feb 16 2025 08:34:04 %S A357027 1,0,0,6,36,210,2430,32424,426552,6575304,118916640,2328078456, %T A357027 49421111256,1153979875152,29201577206256,791744021665344, %U A357027 22988121190902720,712541051083100160,23447653175729566080,816434611464004145280,30009023179153182132480 %N A357027 E.g.f. satisfies A(x) = 1/(1 - x)^(log(1 - x)^2 * A(x)). %H A357027 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>. %F A357027 E.g.f. satisfies log(A(x)) = -log(1 - x)^3 * A(x). %F A357027 a(n) = Sum_{k=0..floor(n/3)} (3*k)! * (k+1)^(k-1) * |Stirling1(n,3*k)|/k!. %F A357027 E.g.f.: A(x) = Sum_{k>=0} (k+1)^(k-1) * (-log(1 - x))^(3*k) / k!. %F A357027 E.g.f.: A(x) = exp( -LambertW(log(1-x)^3) ). %F A357027 E.g.f.: A(x) = LambertW(log(1 - x)^3)/log(1 - x)^3. %t A357027 m = 21; (* number of terms *) %t A357027 A[_] = 0; %t A357027 Do[A[x_] = 1/(1 - x)^(Log[1 - x]^2*A[x]) + O[x]^m // Normal, {m}]; %t A357027 CoefficientList[A[x], x]*Range[0, m - 1]! (* _Jean-François Alcover_, Sep 12 2022 *) %o A357027 (PARI) a(n) = sum(k=0, n\3, (3*k)!*(k+1)^(k-1)*abs(stirling(n, 3*k, 1))/k!); %o A357027 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, (k+1)^(k-1)*(-log(1-x))^(3*k)/k!))) %o A357027 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(log(1-x)^3)))) %o A357027 (PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(lambertw(log(1-x)^3)/log(1-x)^3)) %Y A357027 Cf. A052813, A357026. %K A357027 nonn %O A357027 0,4 %A A357027 _Seiichi Manyama_, Sep 09 2022