This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357033 #15 Oct 14 2022 08:52:55 %S A357033 1,101,202,404,606,1212,2424,7272,21816,41208,84048,123624,144144, %T A357033 336336,288288,504504,432432,865368,864864,1009008,2378376,1729728, %U A357033 3459456,3027024,4756752,6054048,9081072,11099088,12108096,16648632,23207184,29405376,36324288 %N A357033 a(n) is the smallest number that has exactly n divisors that are cyclops numbers (A134808). %e A357033 The divisors of 101 are 1 and 101. Of those, only 101 is a cyclops number; it is the smallest cyclops number, so a(1) = 101. %e A357033 The divisors of 202 are 1, 2, 101, and 202, the cyclops numbers being 101 and 202, so a(2) = 202. %e A357033 The divisors of 404 are 1, 2, 4, 101, 202, and 404, the cyclops numbers being 101, 202 and 404, so a(3) = 404. %p A357033 L:= Vector(10^8): %p A357033 C:= [0]: %p A357033 for d from 3 to 7 by 2 do %p A357033 C:= [seq(seq(seq(a*10^(d-1)+10*b+c,c=1..9),b=C),a=1..9)]; %p A357033 for x in C do %p A357033 Mx:= [seq(i,i=x..10^8,x)]; %p A357033 L[Mx]:= map(`+`,L[Mx],1) %p A357033 od; %p A357033 od: %p A357033 V:= Array(0..max(L)): %p A357033 for n from 1 to 10^8 do %p A357033 if V[L[n]] = 0 then V[L[n]]:= n; fi %p A357033 od: %p A357033 if member(0,V,'k') then convert(V[0..k-1],list) %p A357033 else convert(V,list) %p A357033 fi; # _Robert Israel_, Sep 20 2022 %t A357033 cyclopQ[n_] := Module[{d = IntegerDigits[n], len}, OddQ[len = Length[d]] && Position[d, 0] == {{(len + 1)/2}}]; f[n_] := DivisorSum[n, 1 &, cyclopQ[#] &]; seq[len_, nmax_] := Module[{s = Table[0, {len}], c = 0, n = 1, i}, While[c < len && n < nmax, i = f[n] + 1; If[i <= len && s[[i]] == 0, c++; s[[i]] = n]; n++]; s]; seq[10, 10^5] (* _Amiram Eldar_, Sep 26 2022 *) %o A357033 (Magma) ints:=func<n|n eq 0 select [0] else Intseq(n)>; cyc:=func<n|IsOdd(#ints(n)) and ints(n)[(#ints(n)+1) div 2] eq 0 and Multiplicity(ints(n),0) eq 1>; a:=[]; for n in [0..32] do k:=1; while #[s:s in Divisors(k)| cyc(s)] ne n do k:=k+1; end while; Append(~a,k); end for; a; %Y A357033 Cf. A134808. %K A357033 nonn,base %O A357033 0,2 %A A357033 _Marius A. Burtea_, Sep 20 2022