cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357036 E.g.f. satisfies A(x) = (1 - x * A(x))^(log(1 - x * A(x)) / 2).

This page as a plain text file.
%I A357036 #17 Sep 12 2022 05:18:33
%S A357036 1,0,1,3,26,230,2794,39564,663606,12712104,275171106,6632699040,
%T A357036 176309074644,5123121177096,161577261004860,5497133655605760,
%U A357036 200683752698028924,7825434930630743616,324616635150708044796,14273994548639305751040,663205761925601097418488
%N A357036 E.g.f. satisfies A(x) = (1 - x * A(x))^(log(1 - x * A(x)) / 2).
%F A357036 E.g.f. satisfies log(A(x)) = log(1 - x * A(x))^2 / 2.
%F A357036 a(n) = Sum_{k=0..floor(n/2)} (2*k)! * (n+1)^(k-1) * |Stirling1(n,2*k)|/(2^k * k!).
%t A357036 m = 21; (* number of terms *)
%t A357036 A[_] = 0;
%t A357036 Do[A[x_] = (1 - x*A[x])^(Log[1 - x*A[x]]/2) + O[x]^m // Normal, {m}];
%t A357036 CoefficientList[A[x], x]*Range[0, m - 1]! (* _Jean-François Alcover_, Sep 12 2022 *)
%o A357036 (PARI) a(n) = sum(k=0, n\2, (2*k)!*(n+1)^(k-1)*abs(stirling(n, 2*k, 1))/(2^k*k!));
%Y A357036 Cf. A001761, A357037.
%Y A357036 Cf. A347001, A357028.
%K A357036 nonn
%O A357036 0,4
%A A357036 _Seiichi Manyama_, Sep 09 2022