This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357037 #17 Sep 12 2022 03:04:27 %S A357037 1,0,0,1,6,35,295,3304,42112,599724,9657330,174222576,3464835726, %T A357037 75208002792,1771121398956,44998593873024,1226723273550720, %U A357037 35714547582173280,1106012915718532920,36304411160854523520,1259105580819317636280,46007354360033491345920 %N A357037 E.g.f. satisfies A(x) = 1/(1 - x * A(x))^(log(1 - x * A(x))^2 / 6). %F A357037 E.g.f. satisfies log(A(x)) = -log(1 - x * A(x))^3 / 6. %F A357037 a(n) = Sum_{k=0..floor(n/3)} (3*k)! * (n+1)^(k-1) * |Stirling1(n,3*k)|/(6^k * k!). %t A357037 m = 22; (* number of terms *) %t A357037 A[_] = 0; %t A357037 Do[A[x_] = 1/(1 - x*A[x])^(Log[1 - x*A[x]]^2/6) + O[x]^m // Normal, {m}]; %t A357037 CoefficientList[A[x], x]*Range[0, m - 1]! (* _Jean-François Alcover_, Sep 12 2022 *) %o A357037 (PARI) a(n) = sum(k=0, n\3, (3*k)!*(n+1)^(k-1)*abs(stirling(n, 3*k, 1))/(6^k*k!)); %Y A357037 Cf. A001761, A357036. %Y A357037 Cf. A347002, A357029, A357032. %K A357037 nonn %O A357037 0,5 %A A357037 _Seiichi Manyama_, Sep 09 2022