This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357041 #110 Jul 31 2023 02:25:36 %S A357041 1,4,7,18,21,66,71,196,305,648,1035,2526,4109,8774,16875,34288,65553, %T A357041 134860,262163,531506,1051237,2109594,4194327,8425348,16779257, %U A357041 33611984,67123631,134350206,268435485,537178750,1073741855,2148064768,4295048345,8591114580 %N A357041 a(n) = Sum_{d|n} 2^(d-1) * binomial(d+n/d-1,d). %F A357041 G.f.: (1/2) * Sum_{k>0} (1/(1 - 2 * x^k)^k - 1). %F A357041 G.f.: (1/2) * Sum_{k>0} (2 * x)^k/(1 - x^k)^(k+1). %F A357041 If p is prime, a(p) = p + 2^(p-1). %t A357041 a[n_] := DivisorSum[n, 2^(#-1) * Binomial[# + n/# - 1, #] &]; Array[a, 50] (* _Amiram Eldar_, Jul 31 2023 *) %o A357041 (PARI) a(n) = sumdiv(n, d, 2^(d-1)*binomial(d+n/d-1, d)); %o A357041 (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (1/(1-2*x^k)^k-1))/2) %o A357041 (PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=1, N, (2*x)^k/(1-x^k)^(k+1))/2) %o A357041 (Python) %o A357041 from math import comb %o A357041 from sympy import divisors %o A357041 def A357041(n): return sum(comb(d+n//d-1,d)<<d-1 for d in divisors(n,generator=True)) # _Chai Wah Wu_, Feb 27 2023 %Y A357041 Cf. A081543, A338682. %Y A357041 Cf. A360797. %K A357041 nonn %O A357041 1,2 %A A357041 _Seiichi Manyama_, Feb 26 2023