cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357042 The sum of the numbers of the central diamond of the multiplication table [1..k] X [1..k] for k=2*n-1.

This page as a plain text file.
%I A357042 #77 Oct 04 2024 00:27:08
%S A357042 1,20,117,400,1025,2196,4165,7232,11745,18100,26741,38160,52897,71540,
%T A357042 94725,123136,157505,198612,247285,304400,370881,447700,535877,636480,
%U A357042 750625,879476,1024245,1186192,1366625,1566900,1788421,2032640,2301057,2595220,2916725,3267216,3648385
%N A357042 The sum of the numbers of the central diamond of the multiplication table [1..k] X [1..k] for k=2*n-1.
%C A357042 a(n) is the sum of the elements of the multiplication table, forming the maximum diamond in its center.
%H A357042 Paolo Xausa, <a href="/A357042/b357042.txt">Table of n, a(n) for n = 1..10000</a>
%H A357042 Nicolay Avilov, <a href="/A357042/a357042.jpg">Drawing for a(1)-a(5)</a>
%H A357042 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).
%F A357042 a(n) = n^2*(2*n^2 - 2*n + 1).
%F A357042 a(n) = 2*A000583(n) - A015237(n).
%F A357042 From _Stefano Spezia_, Sep 19 2022: (Start)
%F A357042 G.f.: x*(1 + 15*x + 27*x^2 + 5*x^3)/(1 - x)^5.
%F A357042 a(n) = A000290(n)*A001844(n-1). (End)
%e A357042 In the multiplication table [1..3] X [1..3]: a(2) = 2+2+4+6+6 = 20;
%e A357042 In the multiplication table [1..5] X [1..5]: a(3) = 3+4+3+6+6+8+9+8+12+12+15+16+15 = 117.
%e A357042 For n=3, the multiplication table [1..5] X [1..5] and the terms summed are
%e A357042   *   1  2  3  4  5
%e A357042    -----------------
%e A357042   1|        3
%e A357042   2|     4  6  8
%e A357042   3|  3  6  9 12 15
%e A357042   4|     8 12 16
%e A357042   5|       15
%t A357042 A357042[n_] := n^2*(2*(n-1)*n + 1); Array[A357042, 50] (* or *)
%t A357042 LinearRecurrence[{5, -10, 10, -5, 1}, {1, 20, 117, 400, 1025}, 50] (* _Paolo Xausa_, Oct 03 2024 *)
%Y A357042 Cf. A000290, A001844, A003991.
%Y A357042 Cf. A000583, A015237.
%K A357042 nonn,easy
%O A357042 1,2
%A A357042 _Nicolay Avilov_, Sep 18 2022