cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357045 Lexicographically earliest sequence of distinct non-palindromic numbers (A029742) such that a(n)+a(n+1) is always a palindrome (A002113).

Original entry on oeis.org

10, 12, 21, 23, 32, 34, 43, 45, 54, 47, 19, 14, 30, 25, 41, 36, 52, 49, 17, 16, 28, 27, 39, 38, 50, 51, 15, 18, 26, 29, 37, 40, 48, 53, 13, 20, 24, 31, 35, 42, 46, 65, 56, 75, 76, 85, 86, 95, 96, 106, 116, 126, 136, 146, 157, 105, 97, 64, 57, 74
Offset: 1

Views

Author

Eric Angelini and M. F. Hasler, Sep 14 2022

Keywords

Comments

Conjecture: The sequence contains all non-palindromic numbers (A029742).

Crossrefs

Cf. A029742 (non-palindromes), A002113 (palindromes), A357044 (palindromes with non-palindromic sum of neighbors).

Programs

  • PARI
    A357045_first(n, U=[9], a=1)={vector(n, k, k=U[1]; until( is_A002113(a+k) && !is_A002113(k) && !setsearch(U, k), k++); U=setunion(U,[a=k]); while(#U>1 && U[2]==U[1]+1+is_A002113(U[1]+1), U=U[^1]); a)}
    
  • Python
    from itertools import count, islice
    def ispal(n): s = str(n); return s == s[::-1]
    def agen():
        aset, k, mink = {10}, 10, 12
        while True:
            an = k; yield an; aset.add(an); k = mink
            while k in aset or ispal(k) or not ispal(an+k): k += 1
            while mink in aset: mink += 1
    print(list(islice(agen(), 60))) # Michael S. Branicky, Sep 14 2022