A357045 Lexicographically earliest sequence of distinct non-palindromic numbers (A029742) such that a(n)+a(n+1) is always a palindrome (A002113).
10, 12, 21, 23, 32, 34, 43, 45, 54, 47, 19, 14, 30, 25, 41, 36, 52, 49, 17, 16, 28, 27, 39, 38, 50, 51, 15, 18, 26, 29, 37, 40, 48, 53, 13, 20, 24, 31, 35, 42, 46, 65, 56, 75, 76, 85, 86, 95, 96, 106, 116, 126, 136, 146, 157, 105, 97, 64, 57, 74
Offset: 1
Links
- Eric Angelini, Sums with palindromes, personal blog "Cinquante signes" on blogspot.com, and post to the math-fun list, Sep 12 2022
- Eric Angelini, Sums with palindromes, personal blog "Cinquante signes" on blogspot.com, and post to the math-fun list, Sep 12 2022 [Cached copy]
Crossrefs
Programs
-
PARI
A357045_first(n, U=[9], a=1)={vector(n, k, k=U[1]; until( is_A002113(a+k) && !is_A002113(k) && !setsearch(U, k), k++); U=setunion(U,[a=k]); while(#U>1 && U[2]==U[1]+1+is_A002113(U[1]+1), U=U[^1]); a)}
-
Python
from itertools import count, islice def ispal(n): s = str(n); return s == s[::-1] def agen(): aset, k, mink = {10}, 10, 12 while True: an = k; yield an; aset.add(an); k = mink while k in aset or ispal(k) or not ispal(an+k): k += 1 while mink in aset: mink += 1 print(list(islice(agen(), 60))) # Michael S. Branicky, Sep 14 2022
Comments