cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357059 Decimal expansion of sum of squares of reciprocals of primes whose distance to the next prime is equal to 4, Sum_{j>=1} 1/A029710(j)^2.

This page as a plain text file.
%I A357059 #48 Sep 29 2022 08:51:57
%S A357059 0,3,1,3,2,1,6,2,0,6,4,6
%N A357059 Decimal expansion of sum of squares of reciprocals of primes whose distance to the next prime is equal to 4, Sum_{j>=1} 1/A029710(j)^2.
%C A357059 Convergence table:
%C A357059    k       A029710(k)      Sum_{j=1..k} 1/A029710(j)^2
%C A357059 10000000   3285441223 0.031321620645456519799598611681
%C A357059 20000000   7067090263 0.031321620645890982910821292996
%C A357059 30000000  11044597393 0.031321620646019474620358985896
%C A357059 40000000  15153534937 0.031321620646079307404248696076
%C A357059 50000000  19360462153 0.031321620646113421819579063642
%C A357059 60000000  23647877233 0.031321620646135276227114122713
%C A357059 70000000  28000392817 0.031321620646150384406674037099
%e A357059 0.031321620646...
%t A357059 aa = {}; Do[g1[2 n] = 0, {n, 1, 1000}]; Do[g2[2 n] = 0, {n, 1, 1000}]; Do[g3[2 n] = 0, {n, 1, 1000}]; Do[g4[2 n] = 0, {n, 1, 1000}]; Do[g[2 n] = 0, {n, 1, 1000}];
%t A357059 w1 = 3; n = 3; Monitor[While[n < 10^10, w2 = NextPrime[w1]; kk = w2 - w1;
%t A357059   If[kk < 2000, g[kk] = g[kk] + 1; g1[kk] = g1[kk] + N[1/w1, 1000];g2[kk] = g2[kk] + N[1/w1^2, 1000];g3[kk] = g3[kk] + N[1/w1^3, 1000];g4[kk] = g4[kk] + N[1/w1^4, 1000];
%t A357059 If[IntegerQ[g[kk]/1000000], Print[{n, w1, kk, g[kk]}];If[kk == 4,AppendTo[aa, {n, w1, kk, g[kk], g1[kk], g2[kk], g3[kk], g4[kk]}]]]];w1 = w2; n++], n];aa
%Y A357059 Cf. A006512, A023200, A029710, A046132, A065421, A077800, A078437, A085548, A096247, A160910, A194098, A209328, A209329, A242301, A242302, A242303, A242304, A306539, A342714, A356793.
%K A357059 nonn,cons,hard,more
%O A357059 0,2
%A A357059 _Artur Jasinski_, Sep 10 2022