This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357063 #31 Nov 22 2022 22:36:40 %S A357063 1,4,13,42,127,382,1149,3448,10345,31044,93133,279400,838203,2514610, %T A357063 7543831,22631496,67894489,203683468,611050413,1833151240,5499453721, %U A357063 16498361166,49495083499,148485250498,445455751497,1336367254492,4009101763477,12027305290463,36081915871390,108245747614173,324737242842520,974211728527561,2922635185582686,8767905556748059,26303716670244178,78911150010732543,236733450032197630,710200350096592891 %N A357063 Lengths of the B blocks associated with A091787. %C A357063 The B blocks are explained in the article "A slow-growing sequence defined by an unusual occurrence". They have superscript (2). %H A357063 F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL10/Sloane/sloane55.html">A Slow-Growing Sequence Defined by an Unusual Recurrence</a>, J. Integer Sequences, Vol. 10 (2007), Article 07.1.2. %e A357063 The third B-block of order 2 is B_3^{(2)}=2223222322233. Therefore, a(3)=13. %o A357063 (Python) %o A357063 number_of_terms=38 %o A357063 def Cn(X): %o A357063 l=len(X) %o A357063 cn=1 %o A357063 for i in range(1,int(l/2)+1): %o A357063 j=i %o A357063 while(X[l-j-1]==X[l-j-1+i]): %o A357063 j=j+1 %o A357063 if j>=l: %o A357063 break %o A357063 candidate=int(j/i) %o A357063 if candidate>cn: %o A357063 cn=candidate %o A357063 return cn %o A357063 # This algorithm generates a prefix of the level-3 Gijswijt sequence %o A357063 def Generate_A3(number): %o A357063 glue_lengths=[] %o A357063 A3=[3] %o A357063 S=[3] %o A357063 i=0 %o A357063 while(True): %o A357063 c=Cn(A3) %o A357063 if c<3: %o A357063 glue_lengths.append(len(S)) %o A357063 i=i+1 %o A357063 if i==number: %o A357063 break %o A357063 S=[] %o A357063 A3.append(max(c,3)) %o A357063 S.append(max(c,3)) %o A357063 return glue_lengths %o A357063 glue_lengths=Generate_A3(number_of_terms-1) %o A357063 beta_lengths=[1] %o A357063 beta_length=1 %o A357063 for l in glue_lengths: %o A357063 beta_length=3*beta_length+l %o A357063 beta_lengths.append(beta_length) %o A357063 print(beta_lengths) %Y A357063 Cf. A091787, A357068. %K A357063 nonn %O A357063 1,2 %A A357063 _Levi van de Pol_, Sep 10 2022 %E A357063 By special permission, more than the usual number of terms are shown. - _N. J. A. Sloane_, Oct 23 2022