This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357067 #23 Feb 28 2023 09:23:57 %S A357067 3,4,8,6,6,9,8,8,6,4,3,8,3,6,5,5,9,7,0,2,3,5,8,7,2,7,0,0,7,0,2,2,2,0, %T A357067 6,6,7,3,3,5,4,1,3,6,6,2 %N A357067 Decimal expansion of the limit of A091411(k)/2^(k-1) as k goes to infinity. %C A357067 In the article "The first occurrence of a number in Gijswijt's sequence", this constant is called epsilon_1. Its existence is proved in Theorem 7.2. The constant occurs in a direct formula (Theorem 7.11) for A091409(n), the first occurrence of the integer n in Gijswijt's sequence A090822. %H A357067 Levi van de Pol, <a href="https://arxiv.org/abs/2209.04657">The first occurrence of a number in Gijswijt's sequence</a>, arXiv:2209.04657 [math.CO], 2022. %F A357067 Equal to 1 + Sum_{k>=1} A091579(k)/2^k. Proved in Corollary 7.3 of the article "The first occurrence of a number in Gijswijt's sequence". %e A357067 3.48669886438365597023... %o A357067 (Python) %o A357067 import math %o A357067 from mpmath import * %o A357067 # warning: 0.1 and mpf(1/10) are incorrect. Use mpf(1)/mpf(10) %o A357067 mp.dps=60 %o A357067 def Cn(X): %o A357067 l=len(X) %o A357067 cn=1 %o A357067 for i in range(1, int(l/2)+1): %o A357067 j=i %o A357067 while(X[l-j-1]==X[l-j-1+i]): %o A357067 j=j+1 %o A357067 if j>=l: %o A357067 break %o A357067 candidate=int(j/i) %o A357067 if candidate>cn: %o A357067 cn=candidate %o A357067 return cn %o A357067 def epsilon(): %o A357067 A=[2] # level-2 Gijswijt sequence %o A357067 number=1 # number of S strings encountered %o A357067 position=0 # position of end of last S %o A357067 value=mpf(1) # approximation for epsilon1 %o A357067 for i in range(1,6000): %o A357067 k=Cn(A) %o A357067 A.append(max(2,k)) %o A357067 if k<2: %o A357067 value=value+mpf(i-position)/mpf(2**number) %o A357067 position=mpf(i) %o A357067 number+=1 %o A357067 return value %o A357067 print("epsilon_1: ",epsilon()) %Y A357067 Cf. A090822, A091409, A091411, A091579, A357066, A357068. %K A357067 nonn,cons,more %O A357067 1,1 %A A357067 _Levi van de Pol_, Oct 22 2022