cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357075 Numbers sandwiched between numbers with exactly three distinct prime factors.

This page as a plain text file.
%I A357075 #18 Jul 06 2025 15:15:09
%S A357075 131,139,155,169,181,221,229,239,259,265,281,307,309,311,341,349,365,
%T A357075 371,373,379,407,409,439,441,443,469,475,491,493,505,517,519,521,529,
%U A357075 531,533,551,559,573,581,589,599,601,611,617,619,637,643,645,664,671,679,681,683
%N A357075 Numbers sandwiched between numbers with exactly three distinct prime factors.
%C A357075 Number k such that both k-1 and k+1 are in A033992.
%e A357075 131 is sandwiched between 130 = 2*5*13 and 132 = 2^2*3*11. Both 130 and 132 have exactly three prime factors. Thus, 131 is in this sequence.
%t A357075 Select[Range[1000],Length[FactorInteger[# + 1]] == 3 && Length[FactorInteger[# - 1]] == 3 &]
%t A357075 Mean/@SequencePosition[Table[If[PrimeNu[n]==3,1,0],{n,700}],{1,_,1}] (* _Harvey P. Dale_, Jul 06 2025 *)
%o A357075 (Python)
%o A357075 from sympy import factorint
%o A357075 def isA033992(n): return len(factorint(n)) == 3
%o A357075 def ok(n): return isA033992(n-1) and isA033992(n+1)
%o A357075 print([k for k in range(700) if ok(k)]) # _Michael S. Branicky_, Sep 10 2022
%o A357075 (PARI) is(n)=omega(n-1)==3 && omega(n+1)==3 \\ _Charles R Greathouse IV_, Sep 11 2022
%o A357075 (PARI) list(lim)=my(v=List(),a=3,b,c); forfactored(n=132,lim\1+1, c=#n[2]~; if(c==3 && a==3, listput(v,n[1]-1)); a=b; b=c); Vec(v) \\ _Charles R Greathouse IV_, Sep 28 2022
%Y A357075 Cf. A033992, A357074, A080569.
%K A357075 nonn,easy
%O A357075 1,1
%A A357075 _Tanya Khovanova_, Sep 10 2022