A357077 The lesser of two consecutive numbers with at least 3 prime factors (counted with multiplicity).
27, 44, 63, 75, 80, 98, 99, 104, 116, 124, 125, 135, 147, 152, 153, 164, 170, 171, 174, 175, 188, 189, 195, 207, 224, 230, 231, 242, 243, 244, 245, 255, 260, 272, 275, 279, 284, 285, 296, 315, 324, 332, 342, 343, 344, 350, 351, 356, 363, 368, 369, 374, 375, 384, 387, 399
Offset: 1
Keywords
Examples
27 = 3^3 and 28 = 2^2 * 7. Thus, 27 and 28 both have at least three prime factors. Thus, 27 is in this sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
R:= NULL: count:= 0: state:= 0: for n from 1 while count < 100 do if numtheory:-bigomega(n) >= 3 then if state = 1 then R:= R, n-1; count:= count+1 else state:= 1 fi else state := 0 fi od: R; # Robert Israel, Sep 16 2022
-
Mathematica
Select[Range[1000], Total[Transpose[FactorInteger[#]][[2]]] >= 3 && Total[Transpose[FactorInteger[# + 1]][[2]]] >= 3 &]
-
Python
from sympy import factorint def is033942(n): return sum(factorint(n).values()) > 2 def ok(n): return is033942(n) and is033942(n+1) print([k for k in range(400) if ok(k)]) # Michael S. Branicky, Sep 10 2022
Comments