A357148 a(n) = A357082(n-1) + A357082(n).
1, 3, 5, 7, 9, 15, 16, 15, 16, 24, 29, 32, 33, 29, 34, 29, 32, 36, 34, 42, 61, 64, 34, 32, 61, 64, 61, 64, 61, 64, 65, 72, 76, 64, 72, 85, 76, 64, 72, 82, 64, 72, 100, 104, 100, 91, 64, 72, 64, 72, 104, 100, 116, 127, 128, 129, 133, 128, 129, 128, 129, 128, 129
Offset: 1
Keywords
Links
- Scott R. Shannon, Table of n, a(n) for n = 1..10000
- Michael De Vlieger, Bitmap of (a(n-1) + a(n)), n = 1..2^11, 12X vertical exaggeration, read horizontally where black represents 1 and white 0, with least significant bit on bottom.
- Michael De Vlieger, Let sequence b list primitive terms in this sequence. Annotated plot a(n) = b(k) at (n, k) for n = 1..84.
- Michael De Vlieger, Plot a(n) = b(k) at (n, k) for n = 1..2^12.
- Scott R. Shannon, Image for n = 0..2250000.
Crossrefs
Cf. A357082.
Programs
-
Mathematica
nn = 120; c[] = False; j = a[0] = 0; u = 1; w = "0"; Do[k = u; While[Or[c[k], StringContainsQ[w, Set[v, IntegerString[j + k, 2]]]], k++]; Set[{a[n], c[k], b[n]}, {k, True, j + k}]; Set[{j, w}, {k, w <> IntegerString[k, 2]}]; If[k == u, While[c[u], u++]], {n, nn}]; Array[b, nn] (* _Michael De Vlieger, Sep 15 2022 *)
-
Python
from itertools import islice def agen(): aset, astr, an, mink = {0}, "0", 0, 1 while True: k = mink while k in aset or bin(an+k)[2:] in astr: k += 1 while mink in aset: mink += 1 yield an+k; an = k; aset.add(an); astr += bin(an)[2:] print(list(islice(agen(), 63))) # Michael S. Branicky, Sep 16 2022
Comments