cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357090 E.g.f. satisfies A(x) = (1 - x * A(x))^(log(1 - x * A(x)) * A(x)).

This page as a plain text file.
%I A357090 #10 Sep 11 2022 10:07:33
%S A357090 1,0,2,6,106,1060,21728,396648,10174764,267855264,8517836832,
%T A357090 289596897480,11137252365600,461124747706896,20922578332613904,
%U A357090 1018268757357253920,53372000211252229392,2981808910524462942720,177468245487057424475136
%N A357090 E.g.f. satisfies A(x) = (1 - x * A(x))^(log(1 - x * A(x)) * A(x)).
%F A357090 E.g.f. satisfies log(A(x)) = log(1 - x * A(x))^2 * A(x).
%F A357090 a(n) = Sum_{k=0..floor(n/2)} (2*k)! * (n+k+1)^(k-1) * |Stirling1(n,2*k)|/k!.
%o A357090 (PARI) a(n) = sum(k=0, n\2, (2*k)!*(n+k+1)^(k-1)*abs(stirling(n, 2*k, 1))/k!);
%Y A357090 Cf. A349556, A357091.
%Y A357090 Cf. A357028.
%K A357090 nonn
%O A357090 0,3
%A A357090 _Seiichi Manyama_, Sep 11 2022