cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357092 E.g.f. satisfies A(x)^A(x) = (1 - x * A(x))^log(1 - x * A(x)).

This page as a plain text file.
%I A357092 #11 Sep 11 2022 10:07:54
%S A357092 1,0,2,6,58,580,7568,119448,2195772,46413792,1106667072,29403619080,
%T A357092 861570383232,27600893313552,959793100481616,36006430081497120,
%U A357092 1449539553826089360,62334045415459189248,2851721291051846833152,138299011223141244621024
%N A357092 E.g.f. satisfies A(x)^A(x) = (1 - x * A(x))^log(1 - x * A(x)).
%F A357092 E.g.f. satisfies A(x) * log(A(x)) = log(1 - x * A(x))^2.
%F A357092 a(n) = Sum_{k=0..floor(n/2)} (2*k)! * (n-k+1)^(k-1) * |Stirling1(n,2*k)|/k!.
%o A357092 (PARI) a(n) = sum(k=0, n\2, (2*k)!*(n-k+1)^(k-1)*abs(stirling(n, 2*k, 1))/k!);
%Y A357092 Cf. A141209, A357093.
%Y A357092 Cf. A357028.
%K A357092 nonn
%O A357092 0,3
%A A357092 _Seiichi Manyama_, Sep 11 2022