cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357093 E.g.f. satisfies A(x)^A(x) = 1/(1 - x * A(x))^(log(1 - x * A(x))^2).

This page as a plain text file.
%I A357093 #10 Sep 11 2022 10:08:04
%S A357093 1,0,0,6,36,210,3150,55104,890232,16735944,386223120,9790441056,
%T A357093 265867900056,7943197796352,260063260578576,9156071916788544,
%U A357093 344740627648393920,13880862578534022720,595178180505073088640,27035591386823290224000
%N A357093 E.g.f. satisfies A(x)^A(x) = 1/(1 - x * A(x))^(log(1 - x * A(x))^2).
%F A357093 E.g.f. satisfies A(x) * log(A(x)) = -log(1 - x * A(x))^3.
%F A357093 a(n) = Sum_{k=0..floor(n/3)} (3*k)! * (n-k+1)^(k-1) * |Stirling1(n,3*k)|/k!.
%o A357093 (PARI) a(n) = sum(k=0, n\3, (3*k)!*(n-k+1)^(k-1)*abs(stirling(n, 3*k, 1))/k!);
%Y A357093 Cf. A141209, A357092.
%Y A357093 Cf. A357029.
%K A357093 nonn
%O A357093 0,4
%A A357093 _Seiichi Manyama_, Sep 11 2022