cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357094 E.g.f. satisfies A(x)^A(x) = (1 - x * A(x))^(log(1 - x * A(x)) / 2).

This page as a plain text file.
%I A357094 #10 Sep 11 2022 10:08:15
%S A357094 1,0,1,3,20,170,1789,22869,342222,5874840,113865786,2459446440,
%T A357094 58588151148,1526055579828,43149414029604,1316279791377810,
%U A357094 43090904609439900,1506889769163738432,56062825134853664328,2211097753021838716116,92149286987928381312972
%N A357094 E.g.f. satisfies A(x)^A(x) = (1 - x * A(x))^(log(1 - x * A(x)) / 2).
%F A357094 E.g.f. satisfies A(x) * log(A(x)) = log(1 - x * A(x))^2 / 2.
%F A357094 a(n) = Sum_{k=0..floor(n/2)} (2*k)! * (n-k+1)^(k-1) * |Stirling1(n,2*k)|/(2^k * k!).
%o A357094 (PARI) a(n) = sum(k=0, n\2, (2*k)!*(n-k+1)^(k-1)*abs(stirling(n, 2*k, 1))/(2^k*k!));
%Y A357094 Cf. A141209, A357095.
%Y A357094 Cf. A357036.
%K A357094 nonn
%O A357094 0,4
%A A357094 _Seiichi Manyama_, Sep 11 2022