cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357095 E.g.f. satisfies A(x)^A(x) = 1/(1 - x * A(x))^(log(1 - x * A(x))^2 / 6).

This page as a plain text file.
%I A357095 #10 Sep 11 2022 10:08:43
%S A357095 1,0,0,1,6,35,275,2884,35672,494724,7673670,132896676,2544253426,
%T A357095 53252983992,1208888367596,29592833903424,777311220788320,
%U A357095 21808542026480120,650880782773059840,20590135175285212800,688212821908314587880,24235789570607605377680
%N A357095 E.g.f. satisfies A(x)^A(x) = 1/(1 - x * A(x))^(log(1 - x * A(x))^2 / 6).
%F A357095 E.g.f. satisfies A(x) * log(A(x)) = -log(1 - x * A(x))^3 / 6.
%F A357095 a(n) = Sum_{k=0..floor(n/3)} (3*k)! * (n-k+1)^(k-1) * |Stirling1(n,3*k)|/(6^k * k!).
%o A357095 (PARI) a(n) = sum(k=0, n\3, (3*k)!*(n-k+1)^(k-1)*abs(stirling(n, 3*k, 1))/(6^k*k!));
%Y A357095 Cf. A141209, A357094.
%Y A357095 Cf. A357037.
%K A357095 nonn
%O A357095 0,5
%A A357095 _Seiichi Manyama_, Sep 11 2022