This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357096 #93 Sep 13 2022 09:33:26 %S A357096 2,3,5,7,1,13,17,19,23,29,13,37,14,34,47,35,59,16,67,17,37,79,38,89, %T A357096 79,10,103,107,109,13,127,13,137,139,149,15,157,136,167,137,179,18,19, %U A357096 139,179,19,12,23,27,29,23,239,124,125,257,236,269,127,27,128,238,239 %N A357096 Least number whose set of decimal digits coincides with the set of decimal digits of prime(n). %e A357096 prime(5) = 11 and 1 have the same set of digits {1}, and 1 is the smallest such number, hence a(5) = 1. %p A357096 f:= proc(p) local L,i; %p A357096 L:= sort(convert(convert(convert(p,base,10),set),list)); %p A357096 if L[1] = 0 then L[1]:= L[2]; L[2]:= 0 fi; %p A357096 add(L[-i]*10^(i-1),i=1..nops(L)) end proc: %p A357096 seq(f(ithprime(i)),i=1..100); # _Robert Israel_, Sep 12 2022 %t A357096 a[n_] := Module[{d = Union[IntegerDigits[Prime[n]]]}, If[d[[1]] == 0, d[[1;;2]] = d[[2;;1;;-1]]]; FromDigits[d]]; Array[a, 100] (* _Amiram Eldar_, Sep 13 2022 *) %o A357096 (PARI) a(n)=my(v=vecsort(digits(prime(n)),,8),w=v);if(v[1]==0,j=#v;w=if(j>2,v[3..j],[]);w=concat(Vecrev(v[1..2]),w));fromdigits(w) %o A357096 (Python) %o A357096 from sympy import prime %o A357096 def a(n): %o A357096 s = "".join(sorted(set(str(prime(n))))) %o A357096 return int(s) if "0" not in s else int(s[1] + "0" + s[2:]) %o A357096 print([a(n) for n in range(1, 63)]) # _Michael S. Branicky_, Sep 12 2022 %Y A357096 Cf. A179239, A179308. %K A357096 nonn,base %O A357096 1,1 %A A357096 _Jean-Marc Rebert_, Sep 12 2022