This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357101 #24 Mar 23 2025 20:51:38 %S A357101 2,3,5,9,3,0,4,0,8,5,9,7,1,7,7,6,4,2,0,7,3,0,6,6,0,3,9,2,8,0,0,5,3,2, %T A357101 5,5,5,3,4,6,4,8,1,2,7,8,0,6,7,6,7,2,2,8,3,7,9,7,1,4,1,2,5,1,5,8,3,8, %U A357101 7,5,5,8,8,9,4,4,6,5 %N A357101 Decimal expansion of the real root of x^3 - 2*x^2 - 2. %C A357101 This equals r0 + 2/3 where r0 is the real root of y^3 - (4/3)*y - 70/27. %C A357101 The other two roots are (w1*(35 + 3*sqrt(129))^(1/3) + w2*(35 - 3*sqrt(129))^(1/3) + 2)/3 = -0.1796520429... + 0.9030131458...*i, and its complex conjugate, where w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex roots of x^3 - 1. %C A357101 Using hyperbolic functions these roots are (2/3)*(1 - cosh((1/3)*arccosh(35/8)) + sqrt(3)*sinh((1/3)*arccosh(35/8))*i), and its complex conjugate. %H A357101 <a href="/index/Al#algebraic_03">Index entries for algebraic numbers, degree 3</a> %F A357101 r = ((35 + 3*sqrt(129))^(1/3) + 4*(35 + 3*sqrt(129))^(-1/3) + 2)/3. %F A357101 r = ((35 + 3*sqrt(129))^(1/3) + (35 - 3*sqrt(129))^(1/3) + 2)/3. %F A357101 r = (2/3)*(2*cosh((1/3)*arccosh(35/8)) + 1). %e A357101 2.359304085971776420730660392800532555346481278067672283797141251583875588... %p A357101 h := ((35 + 3*sqrt(129))/8)^(1/3): evalf((1 + h + 1/h)*2/3, 82); # _Peter Luschny_, Sep 25 2022 %t A357101 RealDigits[x /. FindRoot[x^3 - 2*x^2 - 2, {x, 2}, WorkingPrecision -> 120]][[1]] (* _Amiram Eldar_, Sep 21 2022 *) %o A357101 (PARI) polrootsreal(x^3 - 2*x^2 - 2)[1] \\ _Michel Marcus_, Sep 23 2022 %Y A357101 Cf. A058265 - 1 (x^3 + 2*x^2 - 2). %K A357101 nonn,cons,easy %O A357101 1,1 %A A357101 _Wolfdieter Lang_, Sep 20 2022