This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357103 #19 Sep 16 2023 20:58:55 %S A357103 2,1,0,3,8,0,3,4,0,2,7,3,5,5,3,6,5,3,3,1,6,4,9,4,7,3,3,2,8,2,8,9,2,8, %T A357103 0,9,2,4,1,9,4,1,7,0,8,3,2,3,0,2,6,8,5,1,3,7,3,4,7,4,3,0,6,2,1,2,0,9, %U A357103 8,3,7,1,6,4,1,4 %N A357103 Decimal expansion of the real root of x^3 - 3*x - 3. %C A357103 This equals the real root of x^3 - 3*x^2 - 1 if 1 is added. %C A357103 The other two roots of x^3 - 3*x - 3 are w1*phi^(2/3) + w2*phi^(-2/3) = -1.0519017013... + 0.5652358516...*i, and its complex conjugate, where phi = A001622, and w1 = (-1 + sqrt(3)*i)/2 = exp(2*Pi*i/3) and w2 = (-1 - sqrt(3)*i)/2 are the complex roots of x^3 - 1. %C A357103 Using hyperbolic functions these complex roots are cosh((1/3)*arccosh(3/2)) + sqrt(3)*sinh((1/3)*arccosh(3/2))*i, and its complex conjugate. %F A357103 r = (1 + phi)^(1/3) + (1 + phi)^(-1/3), with the golden section phi = A001622. %F A357103 r = (1 + phi)^(1/3) + (2 - phi)^(1/3). %F A357103 r = 2*cosh((1/3)*arccosh(3/2)). %e A357103 2.103803402735536533164947332828928092419417083230268513734743062120983716... %p A357103 h := ((3 + sqrt(5))/2)^(1/3): evalf(h + 1/h, 90); # _Peter Luschny_, Sep 24 2022 %t A357103 RealDigits[Plus @@ Surd[GoldenRatio + 1, {3, -3}], 10, 100][[1]] (* _Amiram Eldar_, Sep 21 2022 *) %o A357103 (PARI) 2*cosh((1/3)*acosh(3/2)) \\ _Michel Marcus_, Sep 23 2022 %Y A357103 Cf. A001622, A357104. %K A357103 nonn,cons,easy %O A357103 1,1 %A A357103 _Wolfdieter Lang_, Sep 20 2022