cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357110 Numbers k such that 1 + k^2 * 2^k + k^3 * 3^k is prime.

This page as a plain text file.
%I A357110 #39 Aug 21 2025 02:43:16
%S A357110 2,4,6,10,12,28,30,52,60,1170,1292,1882,4760,5160,8388,14652,37700,
%T A357110 62388
%N A357110 Numbers k such that 1 + k^2 * 2^k + k^3 * 3^k is prime.
%C A357110 a(17) > 52000.
%C A357110 a(18) > 10^5. - _Michael S. Branicky_, Aug 20 2025
%e A357110 a(5) = 12 because 1 + 12^2 * 2^(12) + 12^3 * 3^(12) = 918919873 is prime.
%t A357110 p = 31000
%t A357110 ParallelTable[
%t A357110 If[PrimeQ[1 + n^2*2^n + n^3*3^n], n, Nothing], {n, 0, p}]
%o A357110 (PARI) is(n)=ispseudoprime(1 + n^2*2^n + n^3*3^n)
%o A357110 (Magma) [k: k in [1..31000] | IsPrime(1 + k^2*2^k + k^3*3^k)];
%o A357110 (Python)
%o A357110 from sympy import isprime
%o A357110 print([k for k in range(52000) if isprime(1 + (2**k)*(k**2) + (3**k)*(k**3))])
%Y A357110 Cf. A058780.
%K A357110 nonn,more
%O A357110 1,1
%A A357110 _Enrico Masina_, Sep 11 2022
%E A357110 a(17) from _Michael S. Branicky_, Aug 20 2025