cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357114 T(n,m) is the denominator of the resistance between two diametrically opposite nodes of a rectangular electric network of n*m quadratic meshes in which all edges are replaced by one-ohm resistors, where T(n,m) is a triangle read by rows.

This page as a plain text file.
%I A357114 #12 Jan 29 2025 08:19:23
%S A357114 1,5,2,8,69,7,19,209,1023,22,15,440,16744,1205,495,71,2639,128617,
%T A357114 4282081,1169441,2494,112,11067,21728,59292739,3498175408,
%U A357114 287916805961,360161,265,4142,5317209,579080689,43600867640,9153575734849,273893674761,153254
%N A357114 T(n,m) is the denominator of the resistance between two diametrically opposite nodes of a rectangular electric network of n*m quadratic meshes in which all edges are replaced by one-ohm resistors, where T(n,m) is a triangle read by rows.
%H A357114 MingKun Yue, <a href="/A357114/b357114.txt">Rows n=1..24 of triangle, flattened</a>
%e A357114 The triangle begins:
%e A357114    1;
%e A357114    7/5,       3/2;
%e A357114   15/8,     121/69,      13/7;
%e A357114   45/19,   430/209,   2089/1023,     47/22;
%e A357114   43/15,  1047/440,  37873/16744,  2749/1205,  1171/495
%t A357114 ResistanceDistance[g_Graph,i_Integer,j_Integer]:=Module[{n=VertexCount[g]},ResistanceDistanceMatrix=PseudoInverse[KirchhoffMatrix[g]+ConstantArray[1/n,{n,n}]];ResistanceDistanceMatrix[[i,i]]+ResistanceDistanceMatrix[[j,j]]-ResistanceDistanceMatrix[[i,j]]-ResistanceDistanceMatrix[[j,i]]]; a[n_Integer,m_Integer]:=ResistanceDistance[GridGraph[{n,m}],1,n*m]; Denominator[Flatten[Table[a[n,m],{n,2,10},{m,2,n}]]] (* _MingKun Yue_, Jan 25 2025 *)
%Y A357114 A357113 are the corresponding numerators.
%K A357114 nonn,frac,tabl
%O A357114 1,2
%A A357114 _Hugo Pfoertner_, Sep 15 2022