This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357119 #19 Feb 16 2025 08:34:04 %S A357119 1,1,0,1,1,0,1,0,2,0,1,0,1,6,0,1,0,0,3,24,0,1,0,0,1,12,120,0,1,0,0,0, %T A357119 6,60,720,0,1,0,0,0,1,35,360,5040,0,1,0,0,0,0,10,226,2520,40320,0,1,0, %U A357119 0,0,0,1,85,1645,20160,362880,0,1,0,0,0,0,0,15,735,13454,181440,3628800,0 %N A357119 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} |Stirling1(n,k*j)|. %H A357119 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PochhammerSymbol.html">Pochhammer Symbol</a>. %F A357119 For k > 0, e.g.f. of column k: Sum_{j>=0} (-log(1-x))^(k*j)/(k*j)!. %F A357119 For k > 0, T(n,k) = ( Sum_{j=0..k-1} (w^j)_n )/k, where (x)_n is the Pochhammer symbol and w = exp(2*Pi*i/k). %e A357119 Square array begins: %e A357119 1, 1, 1, 1, 1, 1, 1, ... %e A357119 0, 1, 0, 0, 0, 0, 0, ... %e A357119 0, 2, 1, 0, 0, 0, 0, ... %e A357119 0, 6, 3, 1, 0, 0, 0, ... %e A357119 0, 24, 12, 6, 1, 0, 0, ... %e A357119 0, 120, 60, 35, 10, 1, 0, ... %e A357119 0, 720, 360, 226, 85, 15, 1, ... %o A357119 (PARI) T(n, k) = sum(j=0, n, abs(stirling(n, k*j, 1))); %o A357119 (PARI) T(n, k) = if(k==0, 0^n, n!*polcoef(sum(j=0, n\k, (-log(1-x+x*O(x^n)))^(k*j)/(k*j)!), n)); %o A357119 (PARI) Pochhammer(x, n) = prod(k=0, n-1, x+k); %o A357119 T(n, k) = if(k==0, 0^n, my(w=exp(2*Pi*I/k)); round(sum(j=0, k-1, Pochhammer(w^j, n)))/k); %Y A357119 Columns k=0-3 give: A000007, A000142, (-1)^n * A105752(n), A357828. %Y A357119 Cf. A357293. %K A357119 nonn,tabl %O A357119 0,9 %A A357119 _Seiichi Manyama_, Oct 17 2022