This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357135 #7 Sep 27 2022 09:00:12 %S A357135 1,2,1,1,1,1,2,1,1,2,1,1,1,3,1,1,1,2,2,2,1,1,1,1,1,1,2,1,1,1,2,1,1,1, %T A357135 1,2,1,3,1,1,1,2,1,1,1,1,2,1,1,2,2,1,2,1,2,2,1,1,1,1,3,1,1,1,1,1,2,2, %U A357135 1,2,1,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1 %N A357135 Take the k-th composition in standard order for each part k of the n-th composition in standard order; then concatenate. %C A357135 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A357135 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %F A357135 Row n is the A357134(n)-th composition in standard order. %e A357135 Triangle begins: %e A357135 0: %e A357135 1: 1 %e A357135 2: 2 %e A357135 3: 1 1 %e A357135 4: 1 1 %e A357135 5: 2 1 %e A357135 6: 1 2 %e A357135 7: 1 1 1 %e A357135 8: 3 %e A357135 9: 1 1 1 %e A357135 10: 2 2 %e A357135 11: 2 1 1 %e A357135 12: 1 1 1 %e A357135 13: 1 2 1 %e A357135 14: 1 1 2 %e A357135 15: 1 1 1 1 %t A357135 stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A357135 Join@@Table[Join@@stc/@stc[n],{n,0,30}] %Y A357135 See link for sequences related to standard compositions. %Y A357135 Row n is the A357134(n)-th composition in standard order. %Y A357135 The version for Heinz numbers of partitions is A357139, cf. A003963. %Y A357135 Row sums are A357186, differences A357187. %Y A357135 Cf. A000120, A001511, A029931, A048896, A058891, A070939, A096111, A329395, A333766, A335404, A357137. %K A357135 nonn %O A357135 0,2 %A A357135 _Gus Wiseman_, Sep 26 2022