This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357137 #10 Sep 24 2022 14:59:28 %S A357137 0,1,1,2,1,1,1,3,1,1,2,2,1,1,2,4,1,1,1,2,1,2,1,3,1,1,2,2,2,2,3,5,1,1, %T A357137 1,2,2,1,1,3,1,1,3,2,1,1,2,4,1,1,1,2,1,2,1,3,2,2,2,2,3,3,4,6,1,1,1,2, %U A357137 1,1,1,3,1,2,2,2,1,1,2,4,1,1,1,2,2,3,2 %N A357137 Maximal run-length of the n-th composition in standard order; a(0) = 0. %C A357137 A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A357137 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A357137 Composition 92 in standard order is (2,1,1,3), so a(92) = 2. %t A357137 stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A357137 Table[If[n==0,0,Max[Length/@Split[stc[n]]]],{n,0,100}] %Y A357137 See link for more sequences related to standard compositions. %Y A357137 The version for Heinz numbers of partitions is A051903, for parts A061395. %Y A357137 For parts instead of run-lengths we have A333766, minimal A333768. %Y A357137 The opposite (minimal) version is A357138. %Y A357137 For first instead of maximal we have A357180, last A357181. %Y A357137 Cf. A000120, A001511, A003754, A029931, A051904, A055396, A056239, A070939, A286470, A356844, A357136. %K A357137 nonn %O A357137 0,4 %A A357137 _Gus Wiseman_, Sep 18 2022