This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357139 #9 Sep 29 2022 22:05:36 %S A357139 1,2,1,1,1,1,1,2,3,1,1,2,1,1,1,2,4,1,1,1,1,1,2,1,1,1,3,2,2,1,2,2,1,2, %T A357139 1,1,1,1,1,1,3,1,2,5,1,3,4,2,1,1,1,1,1,1,2,1,1,1,1,1,2,2,6,1,1,1,1,4, %U A357139 3,1,1,2,2,2,2,3,1,1,1,1,1,2,2,1,4,1,2 %N A357139 Take the weakly increasing prime indices of each prime index of n, then concatenate. %C A357139 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. %e A357139 Triangle begins: %e A357139 1: %e A357139 2: %e A357139 3: 1 %e A357139 4: %e A357139 5: 2 %e A357139 6: 1 %e A357139 7: 1 1 %e A357139 8: %e A357139 9: 1 1 %e A357139 10: 2 %e A357139 11: 3 %e A357139 12: 1 %e A357139 13: 1 2 %e A357139 For example, the weakly increasing prime indices of 105 are (2,3,4), with prime indices ((1),(2),(1,1)), so row 105 is (1,2,1,1). %t A357139 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A357139 Join@@Table[Join@@primeMS/@primeMS[n],{n,100}] %Y A357139 Row lengths are A302242. %Y A357139 Positions of strict rows are A302505. %Y A357139 Positions of constant rows are A302593. %Y A357139 Row sums are A325033, products A325032. %Y A357139 The version for standard compositions is A357135, rank A357134. %Y A357139 A000961 lists prime powers. %Y A357139 A003963 multiples prime indices. %Y A357139 A056239 adds up prime indices. %Y A357139 Cf. A000720, A001221, A001222, A007716, A058891, A109082, A275024, A302243, A324926, A325034. %K A357139 nonn,tabf %O A357139 1,2 %A A357139 _Gus Wiseman_, Sep 29 2022