cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357144 Square array, A(n, k), n, k >= 0, read by antidiagonals; A(n, k) = g(f(n) * f(k)) where f(m) = A002487(m)/A002487(m+1) and g is the inverse of f.

This page as a plain text file.
%I A357144 #8 Sep 18 2022 12:37:49
%S A357144 0,0,0,0,1,0,0,2,2,0,0,3,8,3,0,0,4,1,1,4,0,0,5,32,15,32,5,0,0,6,14,6,
%T A357144 6,14,6,0,0,7,4,7,256,7,4,7,0,0,8,5,9,2,2,9,5,8,0,0,9,128,63,48,35,48,
%U A357144 63,128,9,0,0,10,6,2,1,1,1,1,2,6,10,0,0,11,56,27,2048,47,60,47,2048,27,56,11,0
%N A357144 Square array, A(n, k), n, k >= 0, read by antidiagonals; A(n, k) = g(f(n) * f(k)) where f(m) = A002487(m)/A002487(m+1) and g is the inverse of f.
%C A357144 The function f is a bijection from the nonnegative integers to the nonnegative rational numbers.
%C A357144 The positive integers, together with (x,y) -> A(x,y), form an abelian group isomorph to the multiplicative group of positive rational numbers (f and g act as isomorphisms).
%C A357144 Each row (or column), except the first, is a permutation of the nonnegative integers.
%H A357144 Rémy Sigrist, <a href="/A357144/a357144.gp.txt">PARI program</a>
%F A357144 A(n, k) = A(k, n).
%F A357144 A(n, 0) = 0.
%F A357144 A(n, 1) = n.
%F A357144 A(n, A054429(n)) = 1 for any n > 0.
%F A357144 A(m, A(n, k)) = A(A(m, n), k).
%F A357144 A(n, A(n-1, ... A(2, 1) ... )) = 2^(A002487(n+1)-1).
%e A357144 Array A(n, k) begins:
%e A357144   n\k | 0   1    2   3     4     5    6    7      8    9    10   11    12
%e A357144   ----+------------------------------------------------------------------
%e A357144     0 | 0   0    0   0     0     0    0    0      0    0     0    0     0
%e A357144     1 | 0   1    2   3     4     5    6    7      8    9    10   11    12
%e A357144     2 | 0   2    8   1    32    14    4    5    128    6    56   17    16
%e A357144     3 | 0   3    1  15     6     7    9   63      2   27    33   31    30
%e A357144     4 | 0   4   32   6   256     2   48    1   2048   60    16   62   384
%e A357144     5 | 0   5   14   7     2    35    1   47     20    3  1022  119    10
%e A357144     6 | 0   6    4   9    48     1   60    3     32  510    12   13    72
%e A357144     7 | 0   7    5  63     1    47    3  511     14   15    61  383    33
%e A357144     8 | 0   8  128   2  2048    20   32   14  32768    4   320   26   512
%e A357144     9 | 0   9    6  27    60     3  510   15      4   93    30   39   258
%e A357144    10 | 0  10   56  33    16  1022   12   61    320   30   196    5  1008
%e A357144    11 | 0  11   17  31    62   119   13  383     26   39     5  575     1
%e A357144    12 | 0  12   16  30   384    10   72   33    512  258  1008    1   960
%o A357144 (PARI) See Links section.
%Y A357144 Cf. A002487, A054429, A354522, A355090.
%K A357144 nonn,tabl
%O A357144 0,8
%A A357144 _Rémy Sigrist_, Sep 15 2022