This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357154 #9 Sep 16 2022 22:08:12 %S A357154 1,1,6,52,517,5615,64587,772961,9526304,120084968,1541062520, %T A357154 20066028177,264441631790,3520463590183,47274535397701, %U A357154 639587090815124,8709694025888081,119288137354977880,1642104576551818747,22707897424654348214,315300786621008803900 %N A357154 Coefficients in the power series A(x) such that: A(x)^4 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n. %C A357154 Related identity: 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1). %H A357154 Paul D. Hanna, <a href="/A357154/b357154.txt">Table of n, a(n) for n = 0..400</a> %F A357154 G.f. A(x) = Sum_{n>=0} a(n) * x^n satisfies the following relations. %F A357154 (1) A(x)^4 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n)^(n+1) * A(x)^n. %F A357154 (2) x*A(x)^5 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) / ( (1 - x^(n+1))^n * A(x)^n ). %F A357154 (3) -x*A(x)^6 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (1 - x^(n+1)*A(x))^n. %F A357154 (4) -A(x)^7 = Sum_{n=-oo..+oo} x^(2*n+1) * (A(x) - x^n)^(n+1) / A(x)^n. %F A357154 (5) 0 = Sum_{n=-oo..+oo} x^(2*n+1) * (1 - x^n*A(x))^(n+1) / A(x)^n. %F A357154 (6) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n-1)) * A(x)^n / (A(x) - x^(n+1))^n. %e A357154 G.f.: A(x) = 1 + x + 6*x^2 + 52*x^3 + 517*x^4 + 5615*x^5 + 64587*x^6 + 772961*x^7 + 9526304*x^8 + 120084968*x^9 + 1541062520*x^10 + 20066028177*x^11 + 264441631790*x^12 + ... %e A357154 such that %e A357154 A(x)^4 = ... + x^(-3)*(1 - x^(-2))^(-1)/A(x)^2 + x^(-1)/A(x) + x*0 + x^3*(1 - x)^2*A(x) + x^5*(1 - x^2)^3*A(x)^2 + x^7*(1 - x^3)^4*A(x)^3 + ... + x^(2*n+1)*(1 - x^n)^(n+1)*A(x)^n + ... %e A357154 also %e A357154 -A(x)^7 = ... + x^(-3)*(A(x) - x^(-2))^(-1)*A(x)^2 + x^(-1)*A(x) + x*(A(x) - 1) + x^3*(A(x) - x)^2/A(x) + x^5*(1 - x^2)^3/A(x)^2 + x^7*(A(x) - x^3)^4/A(x)^3 + ... + x^(2*n+1)*(A(x) - x^n)^(n+1)/A(x)^n + ... %o A357154 (PARI) {a(n) = my(A=[1]); for(i=0, n, A = concat(A, 0); %o A357154 A[#A] = polcoeff(Ser(A)^4 - sum(n=-#A\2-1, #A\2+1, x^(2*n+1) * (1 - x^n +x*O(x^#A))^(n+1) * Ser(A)^n ), #A-2); ); A[n+1]} %o A357154 for(n=0, 30, print1(a(n), ", ")) %Y A357154 Cf. A356783, A357151, A357152, A357153, A357155. %K A357154 nonn %O A357154 0,3 %A A357154 _Paul D. Hanna_, Sep 16 2022