cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357179 Expansion of Product_{k>=1} (1 - x^k)^Fibonacci(k).

This page as a plain text file.
%I A357179 #10 Oct 23 2022 23:59:45
%S A357179 1,-1,-1,-1,-1,0,-1,2,1,5,6,14,15,32,40,64,86,131,166,237,287,362,389,
%T A357179 368,149,-339,-1477,-3680,-7827,-15245,-28270,-50493,-87886,-149827,
%U A357179 -250966,-414542,-675741,-1089267,-1736640,-2741788,-4284837,-6632751,-10162683,-15412613,-23110653,-34236290
%N A357179 Expansion of Product_{k>=1} (1 - x^k)^Fibonacci(k).
%C A357179 Convolution inverse of A166861.
%t A357179 nmax = 45; CoefficientList[Series[Product[(1 - x^k)^Fibonacci[k], {k, 1, nmax}], {x, 0, nmax}], x]
%t A357179 a[0] = 1; a[n_] := a[n] = -(1/n) Sum[Sum[d Fibonacci[d], {d, Divisors[k]}] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 45}]
%Y A357179 Cf. A000045, A166861, A261050, A357475.
%K A357179 sign
%O A357179 0,8
%A A357179 _Ilya Gutkovskiy_, Oct 02 2022