This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357182 #17 Sep 29 2022 12:55:57 %S A357182 1,1,0,0,1,3,1,4,6,20,13,48,50,175,141,512,481,1719,1491,5400,4929, %T A357182 17776,15840,57420,52079,188656,169989,617176,559834,2033175,1842041, %U A357182 6697744,6085950,22139780,20123989,73262232,66697354,242931321,221314299,806516560 %N A357182 Number of integer compositions of n with the same length as their alternating sum. %C A357182 A composition of n is a finite sequence of positive integers summing to n. %C A357182 The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. %e A357182 The a(1) = 1 through a(8) = 6 compositions: %e A357182 (1) (31) (113) (42) (124) (53) %e A357182 (212) (223) (1151) %e A357182 (311) (322) (2141) %e A357182 (421) (3131) %e A357182 (4121) %e A357182 (5111) %t A357182 ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; %t A357182 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==ats[#]&]],{n,0,15}] %Y A357182 For product instead of length we have A114220. %Y A357182 For sum equal to twice alternating sum we have A262977, ranked by A348614. %Y A357182 For product equal to sum we have A335405, ranked by A335404. %Y A357182 For absolute value we have A357183. %Y A357182 These compositions are ranked by A357184. %Y A357182 The case of partitions is A357189. %Y A357182 A003242 counts anti-run compositions, ranked by A333489. %Y A357182 A011782 counts compositions. %Y A357182 A025047 counts alternating compositions, ranked by A345167. %Y A357182 A124754 gives alternating sums of standard compositions. %Y A357182 A238279 counts compositions by sum and number of maximal runs. %Y A357182 A261983 counts non-anti-run compositions. %Y A357182 A357136 counts compositions by alternating sum. %Y A357182 Cf. A000120, A032020, A070939, A106356, A114901, A131044, A178470, A233564, A242882, A262046, A301987. %K A357182 nonn %O A357182 0,6 %A A357182 _Gus Wiseman_, Sep 28 2022 %E A357182 a(21)-a(39) from _Alois P. Heinz_, Sep 29 2022