cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357183 Number of integer compositions with the same length as the absolute value of their alternating sum.

This page as a plain text file.
%I A357183 #13 Sep 29 2022 12:56:36
%S A357183 1,1,0,0,2,3,2,5,12,22,26,58,100,203,282,616,962,2045,2982,6518,9858,
%T A357183 21416,31680,69623,104158,228930,339978,751430,1119668,2478787,
%U A357183 3684082,8182469,12171900,27082870,40247978,89748642,133394708,297933185,442628598,990210110
%N A357183 Number of integer compositions with the same length as the absolute value of their alternating sum.
%C A357183 A composition of n is a finite sequence of positive integers summing to n.
%C A357183 The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.
%e A357183 The a(1) = 1 through a(8) = 12 compositions:
%e A357183   (1)  (13)  (113)  (24)  (124)  (35)
%e A357183        (31)  (212)  (42)  (151)  (53)
%e A357183              (311)        (223)  (1115)
%e A357183                           (322)  (1151)
%e A357183                           (421)  (1214)
%e A357183                                  (1313)
%e A357183                                  (1412)
%e A357183                                  (1511)
%e A357183                                  (2141)
%e A357183                                  (3131)
%e A357183                                  (4121)
%e A357183                                  (5111)
%t A357183 ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
%t A357183 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==Abs[ats[#]]&]],{n,0,15}]
%Y A357183 For product instead of length we have A114220.
%Y A357183 For sum equal to twice alternating sum we have A262977, ranked by A348614.
%Y A357183 For product equal to sum we have A335405, ranked by A335404.
%Y A357183 This is the absolute value version of A357182.
%Y A357183 These compositions are ranked by A357185.
%Y A357183 The case of partitions is A357189.
%Y A357183 A003242 counts anti-run compositions, ranked by A333489.
%Y A357183 A011782 counts compositions.
%Y A357183 A025047 counts alternating compositions, ranked by A345167.
%Y A357183 A124754 gives alternating sums of standard compositions.
%Y A357183 A238279 counts compositions by sum and number of maximal runs.
%Y A357183 A261983 counts non-anti-run compositions.
%Y A357183 A357136 counts compositions by alternating sum.
%Y A357183 Cf. A000120, A032020, A070939, A106356, A114901, A131044, A178470, A233564, A242882, A262046, A301987.
%K A357183 nonn
%O A357183 0,5
%A A357183 _Gus Wiseman_, Sep 28 2022
%E A357183 a(21)-a(39) from _Alois P. Heinz_, Sep 29 2022