This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357183 #13 Sep 29 2022 12:56:36 %S A357183 1,1,0,0,2,3,2,5,12,22,26,58,100,203,282,616,962,2045,2982,6518,9858, %T A357183 21416,31680,69623,104158,228930,339978,751430,1119668,2478787, %U A357183 3684082,8182469,12171900,27082870,40247978,89748642,133394708,297933185,442628598,990210110 %N A357183 Number of integer compositions with the same length as the absolute value of their alternating sum. %C A357183 A composition of n is a finite sequence of positive integers summing to n. %C A357183 The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. %e A357183 The a(1) = 1 through a(8) = 12 compositions: %e A357183 (1) (13) (113) (24) (124) (35) %e A357183 (31) (212) (42) (151) (53) %e A357183 (311) (223) (1115) %e A357183 (322) (1151) %e A357183 (421) (1214) %e A357183 (1313) %e A357183 (1412) %e A357183 (1511) %e A357183 (2141) %e A357183 (3131) %e A357183 (4121) %e A357183 (5111) %t A357183 ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; %t A357183 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==Abs[ats[#]]&]],{n,0,15}] %Y A357183 For product instead of length we have A114220. %Y A357183 For sum equal to twice alternating sum we have A262977, ranked by A348614. %Y A357183 For product equal to sum we have A335405, ranked by A335404. %Y A357183 This is the absolute value version of A357182. %Y A357183 These compositions are ranked by A357185. %Y A357183 The case of partitions is A357189. %Y A357183 A003242 counts anti-run compositions, ranked by A333489. %Y A357183 A011782 counts compositions. %Y A357183 A025047 counts alternating compositions, ranked by A345167. %Y A357183 A124754 gives alternating sums of standard compositions. %Y A357183 A238279 counts compositions by sum and number of maximal runs. %Y A357183 A261983 counts non-anti-run compositions. %Y A357183 A357136 counts compositions by alternating sum. %Y A357183 Cf. A000120, A032020, A070939, A106356, A114901, A131044, A178470, A233564, A242882, A262046, A301987. %K A357183 nonn %O A357183 0,5 %A A357183 _Gus Wiseman_, Sep 28 2022 %E A357183 a(21)-a(39) from _Alois P. Heinz_, Sep 29 2022