This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357188 #8 Sep 30 2022 07:50:43 %S A357188 35,65,70,95,105,130,140,143,145,169,175,185,190,195,209,210,215,245, %T A357188 247,253,260,265,280,285,286,290,305,315,319,323,325,338,350,355,370, %U A357188 377,380,385,390,391,395,407,418,420,429,430,435,445,455,473,475,481,490 %N A357188 Numbers with (WLOG adjacent) prime indices x <= y such that the greatest prime factor of x is greater than the least prime factor of y. %C A357188 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset of multisets with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset of multisets with MM-number 78 is {{},{1},{1,2}}. %e A357188 The terms and corresponding multisets of multisets: %e A357188 35: {{2},{1,1}} %e A357188 65: {{2},{1,2}} %e A357188 70: {{},{2},{1,1}} %e A357188 95: {{2},{1,1,1}} %e A357188 105: {{1},{2},{1,1}} %e A357188 130: {{},{2},{1,2}} %e A357188 140: {{},{},{2},{1,1}} %e A357188 143: {{3},{1,2}} %e A357188 145: {{2},{1,3}} %e A357188 169: {{1,2},{1,2}} %e A357188 175: {{2},{2},{1,1}} %e A357188 185: {{2},{1,1,2}} %t A357188 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A357188 Select[Range[100],MatchQ[primeMS[#],{___,x_,y_,___}/;Max@@primeMS[x]>Min@@primeMS[y]]&] %t A357188 Select[Range[100],!LessEqual@@Join@@primeMS/@primeMS[#]&] %Y A357188 These are the positions of non-weakly increasing rows in A357139. %Y A357188 A000961 lists prime powers. %Y A357188 A003963 multiples prime indices. %Y A357188 A056239 adds up prime indices. %Y A357188 Cf. A000720, A001221, A001222, A007716, A275024, A302242, A302243, A302505, A324926, A325032, A325034. %K A357188 nonn %O A357188 1,1 %A A357188 _Gus Wiseman_, Sep 30 2022