This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357189 #11 Oct 01 2022 19:23:09 %S A357189 1,1,0,0,1,1,1,2,2,4,3,5,6,9,9,13,16,23,23,34,37,54,54,78,84,120,121, %T A357189 170,182,252,260,358,379,517,535,725,764,1030,1064,1427,1494,1992, %U A357189 2059,2733,2848,3759,3887,5106,5311,6946,7177,9345,9701,12577,12996,16788 %N A357189 Number of integer partitions of n with the same length as alternating sum. %C A357189 A partition of n is a weakly decreasing sequence of positive integers summing to n. %C A357189 The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. %e A357189 The a(4) = 1 through a(13) = 9 partitions: %e A357189 31 311 42 322 53 333 64 443 75 553 %e A357189 421 5111 432 5221 542 5331 652 %e A357189 531 6211 641 6222 751 %e A357189 51111 52211 6321 52222 %e A357189 62111 7311 53311 %e A357189 711111 62221 %e A357189 63211 %e A357189 73111 %e A357189 7111111 %t A357189 ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; %t A357189 Table[Length[Select[IntegerPartitions[n],Length[#]==ats[#]&]],{n,0,30}] %Y A357189 For product equal to sum we have A001055, compositions A335405. %Y A357189 For product instead of length we have A004526, compositions A114220. %Y A357189 The version for compositions is A357182, ranked by A357184. %Y A357189 For sum equal to twice alternating sum we have A357189 (this sequence). %Y A357189 These partitions are ranked by A357486. %Y A357189 The reverse version is A357487, ranked by A357485. %Y A357189 A000041 counts partitions, strict A000009. %Y A357189 A025047 counts alternating compositions. %Y A357189 A103919 counts partitions by alternating sum, full triangle A344651. %Y A357189 A357136 counts compositions by alternating sum, full triangle A097805. %Y A357189 Cf. A051159, A070939, A131044, A262046, A262977, A301987, A357183. %K A357189 nonn %O A357189 0,8 %A A357189 _Gus Wiseman_, Sep 30 2022