This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357190 #57 Nov 09 2022 19:10:08 %S A357190 17,13,131,107,383,613,43607,1021,334403,26099,40637,138967,212867, %T A357190 360049,502210997,2227399,5682166613,7339303,13630913,35650627, %U A357190 92273957,142605709,4424729404133,671087119,42364430471219,2684353351,404156666702231,10737417109,4872756792902003 %N A357190 a(n) is the least prime p such that A234575(p, A007953(p)) is the n-th power of a prime. %C A357190 a(n) is the least prime p such that the sum of the quotient and remainder on division of p by the sum of digits of p is the n-th power of an integer. %H A357190 Robert Israel, <a href="/A357190/b357190.txt">Table of n, a(n) for n = 1..100</a> %e A357190 a(3) = 131 because 131 is prime, has sum of digits 5, 131 = 26*5 + 1 and 26 + 1 = 27 = 3^3 where 3 is prime; and 131 is the least prime that works. %p A357190 g:= proc(t,M) local s,q,r,n; %p A357190 for s from 2 to 9*M do %p A357190 for r from s-1 to 1 by -1 do %p A357190 q:= t-r; %p A357190 n:= q*s+r; %p A357190 if convert(convert(n,base,10),`+`) = s and isprime(n) then return n fi; %p A357190 if n >= 10^M then return -1 fi; %p A357190 od od; %p A357190 -1 %p A357190 end proc: %p A357190 G:= proc(m) local i,M,found,v,r; %p A357190 found:= false; r:= infinity; %p A357190 for M from 3 while not found do %p A357190 for i from 1 while ithprime(i)^m < 10^M do %p A357190 v:= g(ithprime(i)^m, M); %p A357190 if v > 0 then found:= true; r:= min(v,r) fi %p A357190 od od: %p A357190 r %p A357190 end proc: %p A357190 map(G, [$1..30]); %Y A357190 Cf. A007953, A234575. %K A357190 nonn,base %O A357190 1,1 %A A357190 _J. M. Bergot_ and _Robert Israel_, Oct 25 2022