This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357207 #7 Sep 19 2022 11:09:01 %S A357207 1,1,7,55,469,4307,41678,418872,4330275,45754091,491916135,5364166402, %T A357207 59186372395,659556170091,7412556531714,83921355689635, %U A357207 956228695216241,10957322339242547,126189988012692329,1459793848341094130,16955390069787782159,197653935181097885580 %N A357207 Coefficients in the power series A(x) such that: x*A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n. %F A357207 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following relations. %F A357207 (1) x*A(x)^3 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n. %F A357207 (2) -x*A(x)^4 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n. %F A357207 (3) x*A(x)^3 = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 - x^n), due to the Jacobi triple product identity. %F A357207 (4) -x*A(x)^4 = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 - x^n), due to the Jacobi triple product identity. %e A357207 G.f.: A(x) = 1 + x + 7*x^2 + 55*x^3 + 469*x^4 + 4307*x^5 + 41678*x^6 + 418872*x^7 + 4330275*x^8 + 45754091*x^9 + 491916135*x^10 + ... %e A357207 where %e A357207 x*A(x)^3 = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x)^n + ... %o A357207 (PARI) {a(n) = my(A=[1, 1], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*n+9)); %o A357207 A[#A] = polcoeff( x*Ser(A)^3 - sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]} %o A357207 for(n=0, 30, print1(a(n), ", ")) %Y A357207 Cf. A355361, A357206, A357208, A357209. %K A357207 nonn %O A357207 0,3 %A A357207 _Paul D. Hanna_, Sep 18 2022